71 research outputs found

    Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants

    Get PDF
    BACKGROUND: Aspergillus spp. comprises a very diverse group of lower eukaryotes with a high relevance for industrial applications and clinical implications. These multinucleate species are often cultured for many generations in the laboratory, which can unknowingly propagate hidden genetic mutations. To assess the likelihood of such events, we studied the genome stability of aspergilli by using a combination of mutation accumulation (MA) lines and whole genome sequencing. RESULTS: We sequenced the whole genomes of 30 asexual and 10 sexual MA lines of three Aspergillus species (A. flavus, A. fumigatus and A. nidulans) and estimated that each MA line accumulated mutations for over 4000 mitoses during asexual cycles. We estimated mutation rates of 4.2 × 10-11 (A. flavus), 1.1 × 10-11 (A. fumigatus) and 4.1 × 10-11 (A. nidulans) per site per mitosis, suggesting that the genomes are very robust. Unexpectedly, we found a very high rate of GC → TA transversions only in A. flavus. In parallel, 30 asexual lines of the non-homologous end-joining (NHEJ) mutants of the three species were also allowed to accumulate mutations for the same number of mitoses. Sequencing of these NHEJ MA lines gave an estimated mutation rate of 5.1 × 10-11 (A. flavus), 2.2 × 10-11 (A. fumigatus) and 4.5 × 10-11 (A. nidulans) per base per mitosis, which is slightly higher than in the wild-type strains and some ~ 5-6 times lower than in the yeasts. Additionally, in A. nidulans, we found a NHEJ-dependent interference of the sexual cycle that is independent of the accumulation of mutations. CONCLUSIONS: We present for the first time direct counts of the mutation rate of filamentous fungal species and find that Aspergillus genomes are very robust. Deletion of the NHEJ machinery results in a slight increase in the mutation rate, but at a rate we suggest is still safe to use for biotechnology purposes. Unexpectedly, we found GC→TA transversions predominated only in the species A. flavus, which could be generated by the hepatocarcinogen secondary metabolite aflatoxin. Lastly, a strong effect of the NHEJ mutation in self-crossing was observed and an increase in the mutations of the asexual lines was quantifiedEspaña, MINECO grant number BIO2015-6714

    Leveraging VGI Integrated with 3D Spatial Technology to Support Urban Intensification in Melbourne, Australia

    Get PDF
    High density residential development in metropolitan Melbourne, where contradictory imperatives of neighbourhood character and urban intensification play important roles, remains an uncertain practice. One key issue for plan implementation is the lack of consistency between authorities, developers and the community in interpreting the standards, design guidelines, and state/local strategies, especially those relating to neighbourhood character. There is currently no mechanism to incorporate community perceptions and place experiences as subjective aspects of neighbourhood character in development assessments. There is also little use of micro-scale and multi-dimensional spatial analysis to integrate these subjective aspects with objective measures (e.g. building volume and height; streetscape) to communicate effectively—and in a limited timeframe—with all stakeholders. This paper explores the potential of two emerging geospatial technologies that can be leveraged to respond to these problems. Evidence in the literature suggests that volunteered geographic information (VGI) can provide community input around subjective aspects of the urban environment. In addition, a deluge of three-dimensional (3D) spatial information (e.g. 3D city models) is increasingly available for micro-level (building- or property-level) assessment of the physical aspects of the urban environment. This paper formulates and discusses a conceptual framework to link these two spatial technological advancements in a virtual geographic environment (VGE) that accounts for micro-scale 3D spatial analysis incorporating both subjective and objective aspects of neighbourhood character relevant in implementing compact city strategies

    An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots.

    Get PDF
    The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development

    Acquisition of host-derived carbon in biomass of the ectomycorrhizal fungus Pisolithus microcarpus is correlated to fungal carbon demand and plant defences

    Get PDF
    Ectomycorrhizal (ECM) fungi are key players in forest carbon (C) sequestration, receiving a substantial proportion of photosynthetic C from their forest tree hosts in exchange for plant growth-limiting soil nutrients. However, it remains unknown whether the fungus or plant controls the quantum of C in this exchange, nor what mechanisms are involved. Here, we aimed to identify physiological and genetic properties of both partners that influence ECM C transfer. Using a microcosm system, stable isotope tracing, and transcriptomics, we quantified plant-to-fungus C transfer between the host plant Eucalyptus grandis and nine isolates of the ECM fungus Pisolithus microcarpus that range in their mycorrhization potential and investigated fungal growth characteristics and plant and fungal genes that correlated with C acquisition. We found that C acquisition by P. microcarpus correlated positively with both fungal biomass production and the expression of a subset of fungal C metabolism genes. In the plant, C transfer was not positively correlated to the number of colonized root tips, but rather to the expression of defence- and stress-related genes. These findings suggest that C acquisition by ECM fungi involves individual fungal demand for C and defence responses of the host against C drain

    A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS)

    Get PDF
    The integration of Building Information Modeling (BIM) and Geographic Information System (GIS) has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as "EEEF" criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration

    The genome of the seagrass <i>Zostera marina</i> reveals angiosperm adaptation to the sea

    Get PDF
    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants

    Seafloor mapping – the challenge of a truly global ocean bathymetry

    Get PDF
    Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry
    corecore