20 research outputs found
Zingiber officinale and thymus vulgaris extracts co-loaded polyvinyl alcohol and chitosan electrospun nanofibers for tackling infection and wound healing promotion
Infections are severe complications associated with chronic wounds and tardy healing that should be timely treated to achieve rapid and proper tissue repair. To hinder such difficulties, a nanofibrous mat composed of polyvinyl alcohol and chitosan (PVA/CS) was developed by electrospinning method, containing thyme (Thymus vulgaris) and ginger (Zingiber officinale) extracts. The mat containing 10 wt% of the extracts (at the ratio of 50:50) exposed the nanofibers (NFs) with the nanoscale diameter (average 382 ± 60 nm), smooth surface, and defect-free morphology. Likewise, the relevant analyses of the loaded mat displayed high wettability, porosity, and liquid absorption capacity without any adverse interaction. The obtained mat also provided a high antioxidant activity, and its release profile was continuous and sustained for nearly 72 h. Besides, it inhibited the growth of both Gram-positive S. aureus and Gram-negative E. coli strains. Furthermore, the proposed mat significantly accelerated cutaneous wound healing in bacterial-infected rats by preventing bacteria growth at the wound site. At last, histopathology analysis confirmed the ample regeneration of skin structures, forming collagen fibers and appendages. Overall, the proposed mat containing ginger-thyme extracts provides multiple therapeutic capabilities with promising solutions for inhibiting wound infection and accelerating the healing process
Genetic analysis of chemosensory traits in human twins
We explored genetic influences on the perception of taste and smell stimuli. Adult twins rated the chemosensory aspects of water, sucrose, sodium chloride, citric acid, ethanol, quinine hydrochloride, phenylthiocarbamide (PTC), potassium chloride, calcium chloride, cinnamon, androstenone, Galaxolide™, cilantro, and basil. For most traits, individual differences were stable over time and some traits were heritable (h2 from 0.41 to 0.71). Subjects were genotyped for 44 single nucleotide polymorphisms within and near genes related to taste and smell. The results of these association analyses confirmed previous genotype–phenotype results for PTC, quinine, and androstenone. New associations were detected for ratings of basil and a bitter taste receptor gene, TAS2R60, and between cilantro and variants in three genes (TRPA1, GNAT3, and TAS2R50). The flavor of ethanol was related to variation within an olfactory receptor gene (OR7D4) and a gene encoding a subunit of the epithelial sodium channel (SCNN1D). Our study demonstrates that person-to-person differences in the taste and smell perception of simple foods and drinks are partially accounted for by genetic variation within chemosensory pathways
Data from: Body composition QTLs identified in intercross populations are reproducible in consomic mouse strains
Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL
Body Composition QTLs Identified in Intercross Populations Are Reproducible in Consomic Mouse Strains.
Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL
Data for Mouse Phenome Database_Reed_Bachmanov_June_2015
Contains body composition data for consomic mic
QTL confirmation from the consomic strains.
<p>Confirmation criterion–one or more sexes and one or more reciprocal strains differed in the expected direction using a p-value threshold adjusted for multiple testing (see <b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0141494#pone.0141494.t003" target="_blank">Table 3</a></b>). <i>Bdln4</i> and <i>Bdln5</i> are combined because they are both on chromosome 9.</p
QTLs detection in consomic mice: Average values of body size and composition measures in inbred and consomics strains.
<p>Body weight (top), body length (middle), and adiposity (bottom) in inbred and consomic strains (means ± SEM). Left panels: Strains with 129 genetic background. Right panels: Strains with B6 genetic background. Asterisks (*) indicate a nominal difference between consomic strain and its inbred host (p < .0.05), # indicates significant after correction for multiple testing (p<0.0056). <sup>~</sup>p = 0.0545. <sup>&</sup>borderline significance. <sup>§</sup>mice are heavier (top panel) but have similar gonadal weight, thus are leaner after adjustment for body weight.</p
Inbred and consomic mouse strains used in this study.
<p>* Identification numbers (ID) are shown for strains available from the Jackson Laboratory (JAX; <a href="http://jaxmice.jax.org/" target="_blank">http://jaxmice.jax.org</a>) and the Mutant Mouse Regional Resource Center (MMRRC; <a href="https://www.mmrrc.org/" target="_blank">https://www.mmrrc.org</a>).</p><p><sup>#</sup> ‘Mon’ within mouse strain name is a laboratory code for the Monell Chemical Senses Center issued by the Institute for Laboratory Animal Research (ILAR; <a href="http://dels.nas.edu/ilar_n/ilarhome/labcode.shtml" target="_blank">http://dels.nas.edu/ilar_n/ilarhome/labcode.shtml</a>).</p><p>Abbreviations: F = female; M = male; M = mean; SD = standard deviation; d = days; n/a = not applicable</p