14 research outputs found

    Alzheimer’s Disease: Mechanism and Approach to Cell Therapy

    No full text
    Alzheimer’s disease (AD) is the most common form of dementia. The risk of AD increases with age. Although two of the main pathological features of AD, amyloid plaques and neurofibrillary tangles, were already recognized by Alois Alzheimer at the beginning of the 20th century, the pathogenesis of the disease remains unsettled. Therapeutic approaches targeting plaques or tangles have not yet resulted in satisfactory improvements in AD treatment. This may, in part, be due to early-onset and late-onset AD pathogenesis being underpinned by different mechanisms. Most animal models of AD are generated from gene mutations involved in early onset familial AD, accounting for only 1% of all cases, which may consequently complicate our understanding of AD mechanisms. In this article, the authors discuss the pathogenesis of AD according to the two main neuropathologies, including senescence-related mechanisms and possible treatments using stem cells, namely mesenchymal and neural stem cells

    Distribution of Mycobacterium avium Complex Isolates in Tissue Samples of Pigs Fed Peat Naturally Contaminated with Mycobacteria as a Supplement

    No full text
    In early 1999, there was an increased incidence of tuberculous lesions in the lymph nodes of slaughtered pigs in the Czech Republic. In part 1 of this study, tuberculous lesions were detected in 140 (62%) tissue samples collected from pigs coming from 15 farms in 15 districts at routine veterinary meat inspections in abattoirs. Mycobacteria were isolated from 37 (16%) tissue samples: 34 Mycobacterium avium subsp. hominissuis isolates and three environmentally derived mycobacteria. In search of infection sources, M. avium subsp. hominissuis was isolated from 38 (79%) samples of peat used as a feed supplement. In part 2 of our study, the head, mesenteric, and inguinal lymph nodes of 117 randomly selected slaughtered pigs from one farm with young piglets fed peat as a supplement were investigated for mycobacterial infection. From 65 (56%) pigs, a total of 76 mycobacterial isolates were identified (56 M. avium subsp. hominissuis isolates, 5 M. avium subsp. avium isolates, 3 M. intracellulare isolates, and 12 environmentally derived mycobacterial isolates). IS1245 restriction fragment length polymorphism (RFLP) types with >20 bands of 45 distinct RFLP types were found in 49 M. avium subsp. hominissuis isolates from pigs (n = 31) and peat (n = 18). Identical RFLP types were found in only four pig isolates. Five randomly selected isolates from pigs and peat were subcultured to six independent clones or colonies. Among the IS1245 RFLP types of 30 clones, identical RFLP types obtained from pigs and peat were identified, which confirmed the hypothesis that peat contaminated with mycobacteria represents a significant source of mycobacterial infection for pigs

    Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat

    Get PDF
    INTRODUCTION: A growing number of studies have highlighted the potential of stem cell and more-differentiated neural cell transplantation as intriguing therapeutic approaches for neural repair after spinal cord injury (SCI). METHODS: A conditionally immortalized neural stem cell line derived from human fetal spinal cord tissue (SPC-01) was used to treat a balloon-induced SCI. SPC-01 cells were implanted into the lesion 1 week after SCI. To determine the feasibility of tracking transplanted stem cells, a portion of the SPC-01 cells was labeled with poly-L-lysine-coated superparamagnetic iron-oxide nanoparticles, and the animals grafted with labeled cells underwent magnetic resonance imaging. Functional recovery was evaluated by using the BBB and plantar tests, and lesion morphology, endogenous axonal sprouting and graft survival, and differentiation were analyzed. Quantitative polymerase chain reaction (qPCR) was used to evaluate the effect of transplanted SPC-01 cells on endogenous regenerative processes. RESULTS: Transplanted animals displayed significant motor and sensory improvement 2 months after SCI, when the cells robustly survived in the lesion and partially filled the lesion cavity. qPCR revealed the increased expression of rat and human neurotrophin and motor neuron genes. The grafted cells were immunohistologically positive for glial fibrillary acidic protein (GFAP); however, we found 25% of the cells to be positive for Nkx6.1, an early motor neuron marker. Spared white matter and the robust sprouting of growth-associated protein 43 (GAP43)(+) axons were found in the host tissue. Four months after SCI, the grafted cells matured into Islet2(+) and choline acetyltransferase (ChAT)(+) neurons, and the graft was grown through with endogenous neurons. Grafted cells labeled with poly-L-lysine-coated superparamagnetic nanoparticles before transplantation were detected in the lesion on T(2)-weighted images as hypointense spots that correlated with histologic staining for iron and the human mitochondrial marker MTCO2. CONCLUSIONS: The transplantation of SPC-01 cells produced significant early functional improvement after SCI, suggesting an early neurotrophic action associated with long-term restoration of the host tissue, making the cells a promising candidate for future cell therapy in patients with SCI

    Additional file 1: Figure S1. of Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats

    No full text
    Showing locomotor coordination evaluated by the rotarod test. The time spent on the rod gradually increased in both treated groups, but there were no statistically significant differences between the control and treated groups. (JPG 42 kb

    Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons

    Get PDF
    INTRODUCTION: The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. METHODS: Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. RESULTS: We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. CONCLUSIONS: We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease
    corecore