33 research outputs found

    Particle acceleration by turbulent magnetohydro-dynamic reconnection

    Get PDF
    Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfven transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfven speed, and the ratio of Larmor period to the Alfven transit time

    Particle Acceleration in Multiple Dissipation Regions

    Full text link
    The sharp magnetic discontinuities which naturally appear in solar magnetic flux tubes driven by turbulent photospheric motions are associated with intense currents. \citet{Par83} proposed that these currents can become unstable to a variety of microscopic processes, with the net result of dramatically enhanced resistivity and heating (nanoflares). The electric fields associated with such ``hot spots'' are also expected to enhance particle acceleration. We test this hypothesis by exact relativistic orbit simulations in strong random phase magnetohydrodynamic (MHD) turbulence which is forming localized super-Dreicer Ohm electric fields (EΩ/EDE_\Omega/E_D = 102...10510^2 ... 10^5) occurring in 2..15 % of the volume. It is found that these fields indeed yield a large amplification of acceleration of electrons and ions, and can effectively overcome the injection problem. We suggest in this article that nanoflare heating will be associated with sporadic particle acceleration.Comment: 12 pages, 5 figures, to appear in ApJ

    Particle Acceleration in an Evolving Network of Unstable Current Sheets

    Full text link
    We study the acceleration of electrons and protons interacting with localized, multiple, small-scale dissipation regions inside an evolving, turbulent active region. The dissipation regions are Unstable Current Sheets (UCS), and in their ensemble they form a complex, fractal, evolving network of acceleration centers. Acceleration and energy dissipation are thus assumed to be fragmented. A large-scale magnetic topology provides the connectivity between the UCS and determines in this way the degree of possible multiple acceleration. The particles travel along the magnetic field freely without loosing or gaining energy, till they reach a UCS. In a UCS, a variety of acceleration mechanisms are active, with the end-result that the particles depart with a new momentum. The stochastic acceleration process is represented in the form of Continuous Time Random Walk (CTRW), which allows to estimate the evolution of the energy distribution of the particles. It is found that under certain conditions electrons are heated and accelerated to energies above 1 MeV in much less than a second. Hard X-ray (HXR) and microwave spectra are calculated from the electrons' energy distributions, and they are found to be compatible with the observations. Ions (protons) are also heated and accelerated, reaching energies up to 10 MeV almost simultaneously with the electrons. The diffusion of the particles inside the active region is extremely fast (anomalous super-diffusion). Although our approach does not provide insight into the details of the specific acceleration mechanisms involved, its benefits are that it relates acceleration to the energy release, and it well describes the stochastic nature of the acceleration process.Comment: 37 pages, 10 figures, one of them in color; in press at ApJ (2004

    Understanding coronal heating and solar wind acceleration: Case for in situ near‐Sun measurements

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94903/1/rog1641.pd

    Review on Current Sheets in CME Development: Theories and Observations

    Get PDF

    La psicoterapia di gruppo a tempo limitato con pazienti affetti da sindrome fibromialgica

    No full text
    Il lavoro tratta della psicoterapia di gruppo a tempo limitato con pazienti affetti da sindrome fibromialgica. La scelta di un intervento attraverso la psicoterapia di gruppo per pazienti che lamentano sintomi somatici fornisce ai pazienti che soffrono della stessa patologia un contesto privilegiato di condivisione e di analisi delle difficolt\ue0 comuni e, favorendo il senso di universalit\ue0, permette una migliore convivenza con la malattia
    corecore