35 research outputs found

    The gut microbiota of marine fish

    Get PDF
    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research

    In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm

    No full text
    Local nitrification and carbon assimilation activities were studied in situ in a model biofilm to investigate carbon yields and contribution of distinct populations to these activities. Immobilized microcolonies (related to Nitrosomonas europaea/eutropha, Nitrosomonas oligotropha, Nitrospira sp., and to other Bacteria) were incubated with [14C]‐bicarbonate under different experimental conditions. Nitrifying activity was measured concomitantly with microsensors (oxygen, ammonium, nitrite, nitrate). Biofilm thin sections were subjected to fluorescence in situ hybridization (FISH), microautoradiography (MAR), and local quantification of [14C]‐bicarbonate uptake (beta microimaging). Nitrifying activity and tracer assimilation were restricted to a surface layer of different thickness in the various experiments (substrate or oxygen limitation). Excess oxygen uptake under all conditions revealed heterotrophic activity fuelled by decay or excretion products during active nitrification. Depth limits and intensity of tracer incorporation profiles were in agreement with ammonia‐oxidation activity (measured with microsensors), and distribution of incorporated tracer (detected with MAR). Microautoradiography revealed a sharp individual response of distinct populations in terms of in‐/activity depending on the (local) environmental conditions within the biofilm. Net in situ carbon yields on N, expressed as e– equivalent ratios, varied between 0.005 and 0.018, and, thus, were in the lower range of data reported for pure cultures of nitrifiers
    corecore