48 research outputs found

    Estimating Accuracy of Personal Identifiable Information in Integrated Data Systems

    Get PDF
    Without a valid assessment of accuracy there is a risk of data users coming to incorrect conclusions or making bad decision based on inaccurate data. This dissertation proposes a theoretical method for developing data-accuracy metrics specific for any given person-centric integrated system and how a data analyst can use these metrics to estimate the overall accuracy of person-centric data. Estimating the accuracy of Personal Identifiable Information (PII) creates a corresponding need to model and formalize PII for both the real-world and electronic data, in a way that supports rigorous reasoning relative to real-world facts, expert opinions, and aggregate knowledge. This research provides such a foundation by introducing a temporal first-order logic language (FOL), called Person Data First-order Logic (PDFOL). With its syntax and semantics formalized, PDFOL provides a mechanism for expressing data- accuracy metrics, computing measurements using these metrics on person-centric databases, and comparing those measurements with expected values from real-world populations. Specifically, it enables data analysts to model person attributes and inter-person relations from real-world population or database representations of such, as well as real-world facts, expert opinions, and aggregate knowledge. PDFOL builds on existing first-order logics with the addition of temporal predicated based on time intervals, aggregate functions, and tuple-set comparison operators. It adapts and extends the traditional aggregate functions in three ways: a) allowing any arbitrary number free variables in function statement, b) adding groupings, and c) defining new aggregate function. These features allow PDFOL to model person-centric databases, enabling formal and efficient reason about their accuracy. This dissertation also explains how data analysts can use PDFOL statements to formalize and develop formal accuracy metrics specific to a person-centric database, especially if it is an integrated person- centric database, which in turn can then be used to assess the accuracy of a database. Data analysts apply these metrics to person-centric data to compute the quality-assessment measurements, YD. After that, they use statistical methods to compare these measurements with the real-world measurements, YR. Compare YD and YR with the hypothesis that they should be very similar, if the person-centric data is an accurate and complete representations of the real-world population. Finally, I show that estimated accuracy using metrics based on PDFOL can be good predictors of database accuracy. Specifically, I evaluated the performance of selected accuracy metrics by applying them to a person-centric database, mutating the database in various ways to degrade its accuracy, and the re-apply the metrics to see if they reflect the expected degradation. This research will help data analyst to develop an accuracy metrics specific to their person-centric data. In addition, PDFOL can provide a foundation for future methods for reasoning about other quality dimensions of PII

    Application of Ultrasound Waves to Increase the Efficiency of Oxidative Desulfurization Process

    Get PDF
    One of the key factors for increasing the efficiency of reactions in which catalysts are involved is to increase the contacts and exposure of reagents to the catalysts. Using ultrasonic waves to destabilize the boundary layer between solid catalysts and reagents and mixing the homogeneous catalysts and reagent can increase the rate of reaction. Based on this fact, many industrial processesincludingdesulfurization are enhanced by sonication. In this study a sono desulfurization unit with the capacity of 5 bbl per day, in which oxidative desulfurization is the main mechanism, is designed and tested. Also, the influence of different parameters on the efficiency of the reactions is investigated. Key words: Ultrasonic waves; Desulfurization; Catalyst; Oxidan

    An analysis of underlying factors for implementing privatization in Iranian sport

    Get PDF
    The purpose of this research was to analyze the underlying factors of privatization implementation in Iran's sport, which was developed by developmental approach. Statistical population of this research was consisted of all managers and experts involved in sports privatization in the country. Regarding that this is a qualitative research, a total of 20 people were selected using the snowball purposeful sampling technique as a statistical sample. The data collection tool was interview. Interviews continued until the theoretical saturation stage was fulfilled. The data obtained from interviews were analyzed in three stages of open, axial and selective coding. The results of the research identified 41 concepts and 5 categories including factors related to financial market, management factors, media factors, cultural factors and legal factors that provide the platform for implementation of privatization in the sport of the country. According to the results of this research, privatization in Iran's sport has been affected by various conditions, it is suggested that sport authorities are encouraged to provide a condition in which people can be trained in order to gain specialty to enter in various areas such as advertising private sector and proper culture creation in press and TV and paying attention to philosophy of sport and culture creation among the people

    Outpatient Transurethral Cystolithotripsy of Large Bladder Stones by Holmium Laser

    Get PDF
    Introduction: To assessment of the efficacy and safety of transurethral cystolithotripsy of large bladder stones by holmium laser in the outpatient setting.Methods: In a prospective study, 48 consecutive adult patients with large bladder stones, were enrolled for transurethral cystolithotripsy. Patients older than 18 years, with bladder stones larger than 2 cm were enrolled. Urethral stricture, active urinary infection, and any anesthetic contraindications for operation, were the exclusion criteria. Demographic characteristics of patients, outcomes and complications related to operation and post operation period, were recorded.Results: Patients mean age was 46 ± 7.3 years. Male to female ratio was 45/3. Mean body mass index of patients was 28.5 ± 3.5. Mean stone size was 3.7 ± 1.6 cm. Mean operation time was 43.5 ± 15.5 minutes. Nearly complete stone clearance (98.5%) was achieved in all patients. Mean hospital stay was 6.5 ± 1.3 hours. No major complications were seen. Mean visual analog pain score (VAS) was 4.2 ± 2.1 and 1.4 ± 0.6, during and 1 hour after operation, respectively. During follow up of 22.4 ± 12.5 months, recurrence of bladder stone was not seen. No case of urethral stricture was detected.Conclusion: Transurethral holmium laser lithotripsy is an effective and safe alternative in selected patients with large bladder stones. This procedure can be easily performed in the outpatient setting

    Symbolic Autoencoding for Self-Supervised Sequence Learning

    Full text link
    Traditional language models, adept at next-token prediction in text sequences, often struggle with transduction tasks between distinct symbolic systems, particularly when parallel data is scarce. Addressing this issue, we introduce \textit{symbolic autoencoding} (Σ\SigmaAE), a self-supervised framework that harnesses the power of abundant unparallel data alongside limited parallel data. Σ\SigmaAE connects two generative models via a discrete bottleneck layer and is optimized end-to-end by minimizing reconstruction loss (simultaneously with supervised loss for the parallel data), such that the sequence generated by the discrete bottleneck can be read out as the transduced input sequence. We also develop gradient-based methods allowing for efficient self-supervised sequence learning despite the discreteness of the bottleneck. Our results demonstrate that Σ\SigmaAE significantly enhances performance on transduction tasks, even with minimal parallel data, offering a promising solution for weakly supervised learning scenarios

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore