86 research outputs found

    Preparation of a Semiquinonate-Bridged Diiron(II) Complex and Elucidation of its Geometric and Electronic Structures

    Get PDF
    The synthesis and crystal structure of a diiron(II) complex containing a bridging semiquinonate radical are presented. The unique electronic structure of this S = 7/2 complex is examined with spectroscopic (absorption, EPR, resonance Raman) and computational methods

    Synthesis and Spectroscopic Characterization of High-Spin Mononuclear Iron(II) \u3cem\u3ep\u3c/em\u3e-Semiquinonate Complexes

    Get PDF
    Two mononuclear iron(II) p-semiquinonate (pSQ) complexes have been generated via one-electron reduction of precursor complexes containing a substituted 1,4-naphthoquinone ligand. Detailed spectroscopic and computational analysis confirmed the presence of a coordinated pSQ radical ferromagnetically coupled to the high-spin FeII center. The complexes are intended to model electronic interactions between (semi)quinone and iron cofactors in biology

    Structural, Spectroscopic, and Electrochemical Properties of Nonheme Fe(II)-Hydroquinonate Complexes: Synthetic Models of Hydroquinone Dioxygenases

    Get PDF
    Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)]·[2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)]·[1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xoxox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies

    Mononuclear Iron-(hydro/semi)quinonate Complexes Featuring Neutral and Charged Scorpionates: Synthetic Models of Intermediates in the Hydroquinone Dioxygenase Mechanism

    Get PDF
    Neutral and anionic scorpionate ligands have been employed to generate active-site models of hydroquinone dioxygenases (HQDOs). While the nonheme Fe center in nearly all HQDOs is coordinated to one Asp (or Glu) and two His residues, 1,2-gentisate dioxygenase (GDO) is unique in featuring a three His triad instead. A synthetic GDO model was therefore prepared with the neutral tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand. The gentisate substrate was mimicked with the bidentate ligand 2-(1-methylbenzimidazol-2-yl)hydroquinonate (BIHQ). X-ray diffraction analysis of the resulting complex, [Fe(Ph2TIP)(BIHQ)]OTf (1a), revealed a distorted square-pyramidal geometry. Structural and electrochemical data collected for 1a were compared to those previously reported for [Fe(Ph2Tp)(BIHQ)] (1b), which features an anionic hydridotris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) ligand. Oxidation of 1a and 1b provides the corresponding FeIII complexes (2a/2b) and the crystal structure of 2b is reported. Both complexes undergo reversible deprotonation to yield the brown chromophores, 3a and 3b. Detailed studies of 3a and 3b with spectroscopic (UV/Vis absorption, EPR, resonance Raman) and computational methods determined that each complex consists of a high-spin FeII center ferromagnetically coupled to a p-semiquinonate radical (BISQ). The (de)protonation-induced valence tautomerization described here resembles key steps in the putative HQDO mechanism

    Inclusion and Equity Committee Recommendations for Diverse Recruitment Report

    Full text link
    The UNLV University Libraries Inclusion and Equity Committee (IEC) developed the Diverse Recruitment project in order to fulfill its charge in supporting the Libraries’ commitment to increasing representation and retention of historically underrepresented groups at all levels of staff. These recommendations draw upon a range of best practices, procedures, and programs. Largely informed by Duke University’s February 2018 Task Force for Diversity in Recruitment Report, three task forces each investigated a different aspect of understanding diverse recruitment as it related to the Libraries. These results were synthesized into a series of recommendations for the Libraries’ Leadership Team (LLT) and the Libraries to consider implementing

    DERMATOGLIFIA E A SUA RELAÇÃO COM A LATERALIDADE OCULAR

    Get PDF
    O termo lateralidade vem do latim “lado” e entende-se que seja o lado preferido do indivíduo para realizar suas atividades. Existem algumas teorias que abordam o tema lateralidade. Em uma delas o hemisfério do cérebro especializa-se proporcionando, assim, ao indivíduo uma preferência lateral. Outra teoria é a de que fatores genéticos influenciam na preferência lateral antes mesmo do nascimento e são definidas pelos genes. Existem algumas marcas genéticas na derme humana, entre elas está a impressão digital ou marca dermatoglífica e esta é uma importante manifestação de características genéticas e de desenvolvimento embrionário, pois se desenvolve a partir das informações constantes no DNA agregadas ao fenótipo desenvolvido durante a gestação. O objetivo da pesquisa foi analisar as diferenças das impressões digitais entre destros e canhotos ocular, por meio da dermatoglifia. O protocolo escolhido para analisar o potencial genético por meio da coleta das impressões digitais foi o Dermatoglífico, proposto por Cummins e Midlo (1961), por intermédio do Leitor Dermatoglífico, validado por Nodari Júnior (2009). Para a avaliação da lateralidade ocular dos escolares, foi utilizada a Escala de Desenvolvimento Motor (EDM) (ROSA NETO, 2002), somente o protocolo referente ao teste de lateralidade ocular dos indivíduos. A população deste estudo compreende 326 indivíduos, na faixa etária de 6 a 11 anos de idade, matriculados na escola da rede pública de ensino, do município de Luzerna, Santa Catarina. A amostra foi composta por 154 indivíduos, correspondendo a 47% da população, seguindo como princípios de inclusão e exclusão para participar da pesquisa a autorização dos pais ou responsável, por meio da assinatura do Termo de Consentimento Livre e Esclarecido (TCLE), ter idade entre 6 e 11 anos e não apresentar doenças clinicamente constatadas. As características observadas no Grupo A (sinistros) quando comparadas ao Grupo B (destros), demonstraram que não há uma diferença significativa entre as variáveis quantitativas (número de linhas). Para as variáveis qualitativas (figuras das impressões digitais), foi realizado o teste de qui-quadrado, que não demonstrou diferença significativa entre os grupos. Não houve correlação entre dermatoglifia e lateralidade ocular, portanto, sugerem-se trabalhos com amostras maiores e estudos que observem outras formas de lateralidade que não somente de olho como este foi realizado.Palavras-chave: Lateralidade. Dermatoglifia. Preferência lateral.

    The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09

    Get PDF
    Objectives. HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. Methods. We studied the formation of HLA-B*27:05 and HLA-B*27:09 heterotrimers and FHC forms including dimers in vitro and in transfected cells. We investigated HLA-B*27:05 and HLA-B*27:09 binding to KIR3DL1, KIR3DL2 and LILRB2 by FACS staining with class I tetramers and by quantifying interactions with KIR3DL2CD3ε-reporter cells and KIR3DL2-expressing NK cells. We also measured KIR expression on peripheral blood NK and CD4 T cells from 18 HLA-B*27:05 AS patients, 8 HLA-B27 negative and 12 HLA-B*27:05+ and HLA-B*27:09+ healthy controls by FACS staining. Results. HLA-B*27:09 formed less B272 and FHC than HLA-B*27:05. HLA-B*27:05-expressing cells stimulated KIR3DL2CD3ε-reporter T cells more effectively. Cells expressing HLA-B*27:05 promoted KIR3DL2+ NK cell survival more strongly than HLA-B*27:09. HLA-B*27:05 and HLA-B*27:09 dimer tetramers stained KIR3DL1, KIR3DL2 and LILRB2 equivalently. Increased proportions of NK and CD4 T cells expressed KIR3DL2 in HLA-B*27:05+ AS patients compared with HLA-B*27:05+, HLA-B*27:09+ and HLA-B27− healthy controls. Conclusion. Differences in the formation of FHC ligands for KIR3DL2 by HLA-B*27:05 and HLA-B*27:09 could contribute to the differential association of these alleles with A

    Adapting effects of emotional expression in anxiety: evidence for an enhanced late positive potential

    Get PDF
    An adaptation paradigm was used to investigate the influence of a previously experienced visual context on the interpretation of ambiguous emotional expressions. Affective classification of fear-neutral ambiguous expressions was performed following repeated exposure to either fearful or neutral faces. There was a shift in the behavioural classification of morphs towards ‘fear’ following adaptation to neutral compared to adaptation to fear with a non-significant trend towards the high anxiety group compared to the low being more influenced by the context. The event-related potential (ERP) data revealed a more pronounced late positive potential (LPP), beginning at ~400 ms post-stimulus onset, in the high but not the low anxiety group following adaptation to neutral compared to fear. In addition, as the size of the behavioural adaptation increased there was a linear increase in the magnitude of the late-LPP. However, context-sensitivity effects are not restricted to trait anxiety, with similar effects observed with state anxiety and depression. These data support the proposal that negative moods are associated with increased sensitivity to visual contextual influences from top-down elaborative modulations, as reflected in an enhanced late positive potential deflection

    Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters specificity of the reaction pathway

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ic301175f.The unique metal abstracting peptide (MAP) asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to DLD-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent due to bis-amide, rather than amine/amide, coordination. In addition, both the Ni-tripeptides and Ni-pentapeptides have a −2 charge. The study here demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in reduction potential for the Ni-pentapeptide. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center

    The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network

    Get PDF
    Source at https://doi.org/10.1177/2515245918797607.Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability
    corecore