647 research outputs found

    Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN)

    Get PDF
    It has been hypothesized that the relatively rare autosomal dominant Alzheimer disease (ADAD) may be a useful model of the more frequent, sporadic, late-onset AD (LOAD). Individuals with ADAD have a predictable age at onset and the biomarker profile of ADAD participants in the preclinical stage may be used to predict disease progression and clinical onset. However, the extent to which the pathogenesis and neuropathology of ADAD overlaps with that of LOAD is equivocal. To address this uncertainty, two multicenter longitudinal observational studies, the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN), leveraged the expertise and resources of the existing Knight Alzheimer Disease Research Center (ADRC) at Washington University School of Medicine, St. Louis, Missouri, USA, to establish a Neuropathology Core (NPC). The ADNI/DIAN-NPC is systematically examining the brains of all participants who come to autopsy at the 59 ADNI sites in the USA and Canada and the 14 DIAN sites in the USA (8), Australia (3), UK (1), and Germany (2). By 2014, 41 ADNI and 24 DIAN autopsies (involving 9 participants and 15 family members) had been performed. The autopsy rate in the ADNI cohort in the most recent year was 93% (total since NPC inception: 70%). In summary, the ADNI/DIAN NPC has implemented a standard protocol for all sites to solicit permission for brain autopsy and to send brain tissue to the NPC for a standardized, uniform, and state-of-the-art neuropathologic assessment. The benefit to ADNI and DIAN of the implementation of the NPC is very clear. The NPC provides final ‘gold standard’ neuropathological diagnoses and data against which the antecedent observations and measurements of ADNI and DIAN can be compared

    Can oral infection be a risk factor for Alzheimer’s disease?

    Get PDF
    Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (Herpes simplex type I) and yeasts (Candida species). A causal relationship between periodontal pathogens/non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteraemias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible aetiology of late onset AD (LOAD)

    Alzheimer Europe's position on involving people with dementia in research through PPI (patient and public involvement)

    Get PDF
    YesThis paper reflects Alzheimer Europe’s position on PPI (patient and public involvement) in the context of dementia research and highlights some of the challenges and potential risks and benefits associated with such meaningful involvement. The paper was drafted by Alzheimer Europe in collaboration with members of INTERDEM and the European Working Group of People with Dementia. It has been formally adopted by the Board of Alzheimer Europe and endorsed by the Board of INTERDEM and by the JPND working group ‘Dementia Outcome Measures - Charting New Territory’. Alzheimer Europe is keen to promote the involvement of people with dementia in research, not only as participants but also in the context of PPI, by generating ideas for research, advising researchers, being involved in consultations and being directly involved in research activities. This position paper is in keeping with this objective. Topics covered include, amongst others, planning involvement, establishing roles and responsibilities, training and support, managing information and input from PPI, recognising the contribution of people with dementia involved in research in this way, promoting and protecting the rights and well-being of people with dementia, training and support, and promoting an inclusive approach and the necessary infrastructure for PPI in dementia research.European Union's Health Programme (2014-2020), grant number 707934. This work received funding under an operating grant from the European Union's Health Programme (2014-2020), grant number 707934.European Union's Health Programme (2014–2020), grant number 707934

    Exercise prevents obesity-induced cognitive decline and white matter damage in mice.

    Get PDF
    Obesity in the western world has reached epidemic proportions, and yet the long-term effects on brain health are not well understood. To address this, we performed transcriptional profiling of brain regions from a mouse model of western diet (WD)-induced obesity. Both the cortex and hippocampus from C57BL/6J (B6) mice fed either a WD or a control diet from 2 months of age to 12 months of age (equivalent to midlife in a human population) were profiled. Gene set enrichment analyses predicted that genes involved in myelin generation, inflammation, and cerebrovascular health were differentially expressed in brains from WD-fed compared to control diet-fed mice. White matter damage and cerebrovascular decline were evident in brains from WD-fed mice using immunofluorescence and electron microscopy. At the cellular level, the WD caused an increase in the numbers of oligodendrocytes and myeloid cells suggesting that a WD is perturbing myelin turnover. Encouragingly, cerebrovascular damage and white matter damage were prevented by exercising WD-fed mice despite mice still gaining a significant amount of weight. Collectively, these data show that chronic consumption of a WD in B6 mice causes obesity, neuroinflammation, and cerebrovascular and white matter damage, but these potentially damaging effects can be prevented by modifiable risk factors such as exercise

    Ante- and postmortem tau in autosomal dominant and late-onset Alzheimer\u27s disease

    Get PDF
    Antemortem tau positron emission tomography imaging suggests elevated tau pathology in autosomal dominant versus late-onset Alzheimer\u27s disease at equivalent clinical stages, but does not implicate the specific tau pathologies responsible. Here we made stereological measurements of tau neurofibrillary tangles, neuritic plaques, and neuropil threads and found compared to late-onset Alzheimer\u27s disease, autosomal dominant Alzheimer\u27s disease showed even greater tangle and thread burdens. Regional tau burden resembled that observed in tau imaging of a separate cohort at earlier clinical stages. Finally, our results suggest tau imaging measures total tau burden in Alzheimer\u27s disease, composed predominantly of tangle and thread pathology

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer\u27s disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer\u27s disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score\u27s predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials
    corecore