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Abstract

Introduction: Asymptomatic and mildly symptomatic dominantly inherited

Alzheimer’s disease mutation carriers (DIAD-MC) are ideal candidates for pre-

ventative treatment trials aimed at delaying or preventing dementia onset. Brain

atrophy is an early feature of DIAD-MC and could help predict risk for dementia

during trial enrollment.

Methods:We created a dementia risk score by entering standardized gray-matter vol-

umes from 231 DIAD-MC into a logistic regression to classify participants with and

without dementia. The score’s predictive utility was assessed using Cox models and

receiver operating curves on a separate group of 65DIAD-MC followed longitudinally.

Results: Our risk score separated asymptomatic versus demented DIAD-MC with

96.4% (standard error= 0.02) and predicted conversion to dementia at next visit (haz-

ard ratio=1.32, 95%confidence interval [CI: 1.15, 1.49]) andwithin2years (areaunder

the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond estab-

lishedmethods based on familial age of onset.

Discussion: Individualized risk scores based on brain atrophy could be useful for estab-

lishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.

KEYWORDS

autosomal dominant Alzheimer’s disease, brain atrophy, Dominantly Inherited Alzheimer Net-
work, preclinical Alzheimer’s disease
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1 INTRODUCTION

Alzheimer’s disease (AD) is a devastating progressive neurodegener-

ative disease with high worldwide prevalence. Recent drug trials for

patients with dementia and underlying AD have failed to show mean-

ingful benefit.1,2 One potential explanation for the failure to demon-

strate efficacy is that the interventions were given at disease stages

that are too late to alter clinical progression.3 Many ongoing trials are

attempting treatment at an earlier stage, such as at the time of mild

cognitive symptoms or before the onset of cognitive symptoms.4,5 To

evaluate the ability of these interventions to prevent development of

dementia, researchers need to recruit individuals with a very high risk

of developing symptoms of dementia over the duration of a clinical trial

(usually 1 or 2 years).3 Carriers of mutations in genes that cause dom-

inantly inherited AD (DIAD), such as presenilin-1 (PSEN1), presenilin-2

(PSEN2), and amyloid precursor protein (APP), are certain to develop

dementia, and thus are ideal candidates for AD prevention studies.

Nearly all DIAD mutation carriers (DIAD-MC) develop dementia.

Although the time until the onset of dementia can be estimated based

on the age of symptom onset from individuals with the same type of

muation,6 variability of several years is frequently observed, and this

can occur evenwithin the same family.7

Another approach for approximating time to symptom onset is to

use established biological markers of disease (biomarkers). Similar to

sporadic AD, DIAD-MC undergo biological changes years before the

onset of dementia.8,9 Such changes can be measured with magnetic

resonance imaging (MRI);6,8,10–17 cerebrospinal fluid (CSF) levels of

amyloid beta (Aβ) and phosphorylated tau and total tau;6,8,12,18 and

positron emission tomography (PET) radiotracers that measure glu-

cose metabolism,6,8,12 Aβ6,12 fibrils, and tau accumulation.19 Indeed,

previous studies have shown that changes in many of these biomark-

ers precede cognitive decline in DIAD-MC.12 Some of the aforemen-

tioned imaging modalities are expensive, involve exposure to ionizing

radiation, and are relatively scarce in many parts of the world. It is

thus encouraging that baseline hippocampal volume and change in hip-

pocampal volumeover time,which canbemeasured fromMRI, areboth

predictive of decline in DIAD-MC.12 Changes in volume in other brain

regions are also predictive of cognitive decline in DIAD-MC.10,14 This

would be expected given that cognition is dependent on many brain

regions and that ADcharacteristically spreads through the brain as dis-

ease advances.20 Prior studies in sporadic ADhave indicated thatmea-

surements of volume across the brain can predict likelihood of devel-

oping dementia.21,22 Together, these findings suggest that quantifica-

tion of volume loss across the brain might provide a good predictor of

time to onset of dementia. If such an estimate could be derived from a

single measurement, it would further improve its value, for instance by

allowing people who appear far from dementia to defer follow-up for a

longer period compared to those in whom dementia is imminent.

Individualized atrophy-based risk scores have been previously

reported to predict symptom onset in asymptomatic carriers of muta-

tions that cause frontotemporal dementia.23 The risk score uses calcu-

lated atrophy in each brain region at a single time point to predict the

individual’s risk for dementia at subsequent visits. The aim of the cur-

HIGHLIGHTS

∙ Brain atrophy precedes cognitive decline by years in dom-

inantly inherited Alzheimer’s disease.

∙ Brain atrophy–based risk scores can predict dementia

onset in mutation carriers.

∙ Risk score can help establish enrollment criteria for

Alzheimer’s disease prevention trials.

rent study was to evaluate whether a similar method is useful in DIAD

and to assess its added benefit beyond the estimated years to onset

(EYO) that is calculated based on the reported age of onset for each

specific DIADmutation.

2 METHODS

2.1 Overview

Our analysis was conducted in two stages. The first stage used logistic

regression in cognitively normal DIAD-MC participants and DIAD-MC

patients with established dementia at study entry to identify a pattern

of atrophy associated with the presence of dementia and to develop a

dementia risk score that can be calculated based on the similarity of

a given individual’s regional brain volumes to that pattern. In the sec-

ond stage of the analysis, the risk score was applied to DIAD-MC par-

ticipants who had not yet developed dementia at study entry and who

were followed longitudinally, and the ability of the risk score to predict

onset of dementia at follow-upwas assessed.

2.2 Subjects

We included 216 DIAD-MC enrolled in the Dominantly Inherited

Alzheimer Network (DIAN; 12th data freeze, 2008 to 2017), and 15

DIAD-MC seen at the Alzheimer’s Disease Research Centers at the

University of California Los Angeles (ADRC-UCLA) and University of

Southern California (ADRC-USC), as well as 99 non-carrier family

members enrolled in DIAN as controls for image analysis. We included

the additional ADRC cohort patients because the DIAN dataset con-

tained relatively few cases who had established dementia at study

entry.

DIAN is a multicenter study of individuals from families with known

causative mutations for DIAD. Enrolled family members undergo

initial genotyping and clinical reassessment every one or more years,

including neuroimaging. Subjects can be DIAD-MC or non-carrier fam-

ily members. The DIAN study receives approval from the institutional

review board (IRB) of each participating site. Written informed con-

sent is obtained from all participants or their designated guardians.8
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TABLE 1 Participant demographics and genotype (of threemutated genes causing dominantly inherited Alzheimer’s disease)

Control group Training group Testing group

CDR 0 CDR 0 CDR≥ 1 CDR 0 CDR 0.5 Convertersa

Cohort DIAN DIAN DIAN ADRCb DIAN DIAN DIAN

N (visits) 99 (99) 123 (123) 28 (28) 15 (15) 15 (54) 20 (57) 30 (95)

Follow upMean± SD (years) 2.9± 3.4 2.79± 1.09 1.56± 1.36 NA 5.01± 1.23 3.15± 1.52 2.39± 1.35

PSEN1 NA 87 22 15 11 13 21

PSEN2 NA 15 0 0 0 0 3

APP NA 21 6 0 4 7 6

AgeMean± SD (years) 38± 11.3 33.6± 9.5 48.7± 8.8 43± 6.1 39.2± 9.8 47.2± 10.7 43.2± 9.0

Male % 41 (41%) 56 (45.5%) 14 (50%) 9 (60.0%) 4 (26.6%) 5 (25%) 11 (36.6%)

Abbreviations: ADRC, Alzheimer’s Disease Research Center; APP, amyloid precursor protein; CDR, Clinical Dementia Rating; DIAN, Dominantly Inherited

Alzheimer Network; PSEN, presenilin; SD, standard deviation; UCLA, University of California Los Angeles; USC, University of Southern California.
aRefers to subjects from the ADRC-UCLA and ARDC-USC.
bConverters refers to subject who converted fromCDR 0 or fromCDR 0.5 to CDR 1, 2, or 3, and to subjects who converted fromCDR 0 to CDR 0.5.

The ADRC-UCLA and ADRC-USC are both National Institute on

Aging–designated research centers that offer extensive clinical, neu-

roimaging, andmolecular profiling of patients with dementia, including

DIAD-MC.24 In the case of DIAD-MC evaluated in ADRC-UCLA or

ADRC-USC, the studywas approved by each institution’s IRB. Subjects

or their proxies gave written approval for study participation.13

Our inclusion criteria included availability of the following data for

each individual: age, sex, and functional status data as expressed in

ClinicalDementiaRatingGlobal Score (henceforth referred to asCDR),

and one ormore 3-Tesla T1 structural MRIs.

The 231 DIAD-MC were divided into two groups. A training group

(n = 166) was created to identify the atrophy pattern associated with

dementia and develop a dementia risk score. This group consisted

of 123 participants with CDR = 0 and 43 patients with CDR ≥1 at

their first visit. To maximize the likelihood that the images from the

CDR = 0 group represented the asymptomatic phase of disease, we

only included individualswith aCDR=0 rating for two consecutive vis-

its. The first study image from each participant was used for training.

The testing group consisted of 65 DIAD-MCwho did not have demen-

tia at study entry and who were followed longitudinally, and whose

imageswere used to test the risk score. Table 1 summarizes the groups

and the amount of DIAD-MC in each.

2.3 Clinical and genetic assessment

Functional status was determined using the CDR. Each individual’s

CDR represents a weighted average of six functional domains (mem-

ory, orientation, judgment and problem solving, community affairs,

home and hobbies, personal care). The scale categorizes individuals as

asymptomatic (CDR=0), having verymild symptoms that donot impair

independent functioning (CDR = 0.5), or clear symptoms of dementia

(CDR≥ 1). Genotypingmethods have been previously described.8,13

The mutation-EYO is a variable that estimates the time until symp-

tomonset and is calculated at each visit by subtracting the participant’s

age from the mean age of symptom onset for their specific mutation7

(i.e., negative values indicate conversion is expected to occur in the

future).

2.4 Image acquisition

Participants in the DIAN study underwent 3-Tesla volumetric T1-

weightedMRI according to the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI)–defined sequences.25 Matching between scanners and

image quality control were performed according to the ADNI proto-

col by the study imaging core.8 Participants of the ADRC-UCLA and

ADRC-USC underwent similar MRI acquisition protocols (see Table S1

in supporting information).

2.5 Image processing

For this study we only analyzed T1-weighted images. We excluded all

images with excessive motion and imaging artifacts, as determined by

visual inspection. We corrected for magnetic field bias using the N3

algorithm.26 We segmented the remaining images using the unified

segmentation procedure in Statistical Parametric Mapping (SPM) ver-

sion 12 into graymatter (GM), white matter, and CSF.27

The next steps in image processing dependedonwhether the partic-

ipant contributed an image from a single observation or multiple longi-

tudinal observations. For the training group, a study-specific template

representative of all participants was generated from T1 GM images

using diffeomorphic anatomical registration using exponentiated lie

algebra.28The imageswere subsequently normalized andmodulated in

the study-specific template space using linear and non-linear registra-

tion.

For the testing group, an additional step included creation of an

intraparticipant template using nonlinear diffeomorphic and rigid body

registration implemented with SPM.29 This process minimizes bias in
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estimating change in volume over time.27 The group template for this

group was generated from the within-participant averaged GM, white

matter, and CSF tissuemaps by nonlinear and rigid-body registration.

All images were then warped into a group template space and

smoothed with a 4 mm isotropic Gaussian kernel. We calculated total

intracranial volume (TIV) for each participant in group template space.

2.6 Calculation of atrophy burden

For every processed image, we estimated atrophy in each GM voxel by

regional voxel estimates of volume relative to a control group of 99

non-carrier asymptomatic family members from the DIAN study. This

was done to create aW-score, which is similar to a z-score and repre-

sents a standardized estimate of atrophy at that voxel after account-

ing for age and TIV.30 We summed the voxel-wiseW-scores within 179

regions of interest (ROI), as defined by theDesikan brain atlas31 to cre-

ate ameasure of atrophy burden for each ROI.

2.7 Generation of DIAD atrophy-based dementia
risk score

The concept and method for generating an atrophy-based dementia

risk score (henceforth risk score) from w-scores has been described

in detail previously.23 Briefly, we created w-score based regional mea-

sures of atrophy burden, as described above, from the earliest images

obtained from individuals in the training group. The regional atrophy

burden estimates from the asymptomatic and CDR ≥ 1 cases in the

training group were entered into an L2-regularized logistic regres-

sion algorithm,32 with diagnosis as the categorical outcome. The algo-

rithm was implemented in a machine learning Python package using

the fast incremental gradient method.33,34The probability distribu-

tion formula and method of optimizing the empirical log-logistic have

been previously described.23 To estimate model performance a five-

fold cross-validation scheme was used,35 as previously described.23

The predicted outcome from the fitted logistic regression equation is

a risk score that ranges from 0 to 1 and represents the probability

of either being demented or asymptomatic. To test the accuracy of

our risk in separating asymptomatic fromDIAD-MCwith dementia we

dichotomized individual scores above 0.5 as approximating dementia

and below 0.5 approximating asymptomatic individuals. We compared

risk score–based approximation of symptoms to actual symptoms in

each individual. The risk score accuracy was calculated as the propor-

tion of patients correctly classified.

2.8 Testing the utility of the risk score

We next assessed the utility of the risk score and mutation-EYO for

predicting dementia onset in the testing group using two methods: a

Cox regression model and a receiver operating characteristic (ROC)

curve. Risk scores were calculated from all images in the testing group,

which included carriers who started at a CDR 0 or 0.5 and were fol-

lowed longitudinally.

We used a Cox regression model with atrophy risk score and

mutation-EYO as time-varying predictors and conversion from

CDR = 0 or CDR = 0.5 to CDR ≥ 1 as the outcome. Sex was added

as a covariate in these models. To quantify the relationship between

risk score and outcome, we estimated the effect of a 10% increase in

the risk score (increase in value of 0.1). A Kaplan–Meier curve was

constructed for this model with individual scores dichotomized above

and below risk score value 0.5; this value was chosen for illustra-

tive purposes. We also tested an interaction effect of risk score by

mutation-EYO in a secondmodel.

In addition, we evaluated and compared the risk scores and

mutation-EYO performance in identifying DIAD-MC who converted

from either CDR 0 or 0.5 to CDR ≥ 1 within 25 months of their base-

line visit using a ROC curve. This time frame was chosen to approxi-

mate duration of some disease-modifying drug trials that might target

prevention of dementia. For this analysis, we included the same individ-

uals as in the Cox regression model. We dichotomized the risk scores

above 0.5 and themutation-EYOvalue higher than negative 25months

as predicting change from CDR = 0 or 0.5 to CDR ≥ 1. This technique

fits a maximum likelihood ROC model using a binormal distribution of

the true state of the observation (progressed vs. not progressed). The

ROCmodels were fitted using Stata v16.1.

3 RESULTS

3.1 Participants

The study group included 231 DIAD-MC and 99 non-carrier family

members. Of these, 166 DIAD-MCwere included in the training group

for generating the logistic model risk score (124 PSEN1, 15 PSEN2, and

27 APP) and 65 in the testing group for survival analysis (45 PSEN1, 3

PSEN2, and 17 APP). Table 1 summarizes the age and sex by symptom

severity for each analysis used, including the control group.

3.2 Atrophy-based dementia risk score
generation

The training group consisted of 43 DIAD-MC with CDR ≥ 1 and 123

withCDR=0 for two consecutive visits, and amean timeonCDR=0of

2.79± 1.09 years. Figure 1 shows the optimal weight each brain region

is given as a covariate in the logistic regression formula for the risk

score. An ROI’s weight indicates its reliability in separating CDR = 0

and CDR ≥ 1. Table 2 lists the 50 ROIs with highest absolute weight

alongside their mean standardized atrophy in DIAD-MC with CDR ≥

1. As expected, subregions of the medial temporal, precuneus, tem-

poroparietal, and dorsolateral frontal regions comprised most of the

list and showed the largest degree of atrophy, but highweights for pre-

dictionwere also observed in subcortical regions such as the cerebellar

cortices, globus pallidi, and caudate nuclei. Our model achieved good
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F IGURE 1 Brainmap displaying the relative weight (color coded) each region of interest (ROI) is given in the atrophy-based dementia risk
score. Individual ROI weights were the result of the optimization of the logistic regressionmodel. These weights were subsequently used to
calculate prediction scores for the survival analysis. The weight indicates the degree of reliability of an ROI in separating presymptomatic and
demented dominantly inherited Alzheimer’s diseasemutation carriers. An ROI with a high positive or negative weight increases the probability
that a given individual with atrophy in this region is Clinical Dementia Rating (CDR) scale ≥ 1 or CDR= 0 respectively, whereas a weight closer to
zero or zero indicates the ROI is less relevant for separating between these two outcomes. A andD, Left lateral andmedial views, respectively. C
and F, Right lateral andmedial views, respectively. B and E, Hippocampal and basal ganglia level coronal slices, respectively

separation of symptomatic DIAD-MC based on risk score cutoff above

0.5 with a 96.4% (standard error [SE]= 0.02).

3.3 Predicting symptom onset

The hazard ratio (HR) for our Cox model was 1.31 (95% confidence

interval [CI] 1.14–1.49, P < .001), indicating higher risk and shorter

time to conversion with increasing risk score. Results of Kaplan–Meier

curve for the Cox model, after dichotomizing the risk score using a

threshold of 0.5, can be seen in Figure 2. The HR for mutation-EYO

was 1.18 (95% CI 1.03–1.35, P = .017). Sex was not a statistically sig-

nificant predictor of survival (HR = 0.41, 95% CI 0.15–1.16, P = .093),

but was in the direction of greater risk for males. There was no signif-

icant interaction between mutation-EYO and risk score (P = .88). The

ROC area under the curve (AUC) was 0.903 (0.823–0.982) for the risk

score, 0.825 (0.724–0.927) for the EYO, and 0.910 (0.830–0.990) for

both (Figure 3).

4 DISCUSSION

Our aim was to determine whether individualized atrophy-based risk

scores from a single observation could predict onset of dementia in

DIAD-MC. Our developed risk score separated asymptomatic DIAD-

MC from those with dementia with an accuracy of 96.4%. Moreover,

in an independent subset of asymptomatic and mildly symptomatic

DIAD-MC with longitudinal observations, every 0.1 unit increase in

our risk score (a 10% increase) translated to roughly 1.3-fold increased

F IGURE 2 Kaplan–Meier curve of displaying dominantly inherited
Alzheimer’s diseasemutation carriers survival fromClinical Dementia
Rating (CDR) scale 0 or 0.5 to CDR 1.Mutation carriers were
dichotomized using the atrophy-based dementia risk score values
above and below 0.5 (red and blue, respectively)

likelihood of converting to dementia. Last, the risk score was useful in

identifying asymptomaticDIAD-MCthat converted todementiawithin

2 years with 90.3% accuracy, and achieved 91% accuracy when com-

binedwith the EYO.

These findings are consistentwith and extendpriorwork. In particu-

lar, previous studies have shown that hippocampal volumes and decline

in hippocampal and whole brain cortical volumes, as well as other

biomarkers, predict decline in DIAD-MC.6,8,10–13,36 To our knowledge
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F IGURE 3 Receiver operating curve for conversion to dementia within 25months in dominantly inherited Alzheimer’s diseasemutation
carriers based on: the Dominantly Inherited Alzheimer Network estimated years to onset variable (blue), brain atrophy–based dementia risk score
(green), and both (red). AUC, area under the curve; CDR, Clinical Dementia Rating

this is the first study demonstrating the utility of single measurements

of cerebral GM for predicting dementia onset, a critical event in the

evolution of disease, in DIAD-MC.

Our results suggest that individualized atrophy-baseddementia risk

scores could help address several challenges in developing treatments

for AD. The age of symptom onset can vary bymany years in DIAD-MC

even within carriers of the same type of DIAD mutation.7 Trials seek-

ing to delay dementia onset must identify individuals that will develop

symptoms within a short, defined time frame. An atrophy-based risk

score may be useful for selecting mutation carriers that are closest to

dementia conversion. This can help avoid unnecessary inclusion of indi-

viduals at low risk for dementia within 2 to 3 years in studies of DIAD-

MC and increase trial power. Moreover, individual atrophy maps and

risk scores can theoretically be used to follow recruited subjects for

progression throughout trials. Proximity to dementia onsetmay also be

used to inform clinical care of DIAD-MC.

Our approach is similar to prior analyses that used baseline atrophy

patterns to predict dementia in sporadic AD.22,37 Many of these stud-

ies were conducted using data from the ADNI.22,38,39 This database

comprises individuals with sporadic AD that are on average 30 to

40 years older than most DIAD-MC. Brain atrophy in DIAD-MC can

occur in areas not typically associated with sporadic AD, such as the

putamen and thalamus.10 Thus, models relying on atrophy in sporadic

AD, particularly in predetermined ROI,21,38,40 might not be generaliz-

able to DIAD populations. This justified an empirical approach to iden-

tify the most valuable regions for predicting dementia in DIAD. Our

method is designed to identify regions that predict onset of demen-

tia without reliance on a priori ROI. Indeed, although our analysis

showed that the temporal, parietal, and frontal regions showed the

highest degree of atrophy and predicted onset of dementia, as would

be expected based on sporadic AD (Figure 1, Table 2), regions not typ-

ically atrophic in sporadic AD, such as the cerebellar cortices, globus

pallidi, and caudate nuclei also contributed to prediction. The highest

contribution of atypical ROIwas from the cerebellar cortices, although

it should be noted that the combined contributions of atypical subcor-

tical regionswas smaller than for the typicalADregions taken together.

While cerebellar GM volume in DIAD-MC with dementia was reliably

lower than that of asymptomatic DIAD-MC, regions typical of sporadic

AD were on average more atrophic and together contributed more to

the risk score (Table 2). Cerebellar atrophy is generally understudied

in AD and DIAD. It has been previously described in some studies of

DIAD-MC,10,16,41 butmany studies have relied on surface-basedmeth-

ods that exclude the cerebellum from analysis.14,15

Our current methods have several limitations that could be

addressed in future analyses to improve utility. Accuracy of the risk

score can be increased by using a larger sample size. To generate

our risk score we pooled three different DIAD genes (with 67 dif-

ferent mutations) to maximize our sample size. Building this model

in each gene separately would likely increase risk score accuracy but

would require a larger sample size. Furthermore, the relative value

of imaging-based predictors compared to mutation-EYO may vary by

mutation. The risk score was generated from neuroimaging data of 43

DIAD-MC with dementia; of these 12 had a CDR of 2 or 3. Using neu-

roimaging data from DIAD carriers at earliest conversion to CDR of
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TABLE 2 The 50 ROI of highest absolute weight given in the
atrophy-based dementia risk score alongside the ROI’s mean
standardized atrophy (W-score) in DIAD-MCwith CDR>1

Graymatter regions of interest

(Desikan-Killiany Atlas) Weight

W-scores

in CDR≥ 1

(mean± SD)

Caudal middle frontal left 0.5747 –0.79± 0.58

Cerebellum left 0.5111 –0.61± 1.14

Inferior temporal right 0.4847 –1.07± 0.64

Banks superior temporal sulcus left 0.4803 –1.39± 0.8

Caudal middle frontal right 0.44 –0.69± 0.64

Entorhinal right 0.3732 –1.22± 1.14

Pallidum right 0.3643 –0.17± 0.12

Inferior parietal right 0.3557 –1.26± 0.72

Precuneus right 0.3466 –1.6± 0.68

Middle temporal right 0.3432 –1.29± 0.79

Cerebellum right 0.3356 –0.6± 1.02

Caudal anterior cingulate right 0.3228 –0.74± 0.81

Precuneus left 0.3012 –1.57± 0.66

Pars oercularis left 0.298 –0.67± 0.66

Insula left 0.2961 –0.84± 0.79

Pallidum left 0.2933 –0.29± 0.19

Hippocampus right 0.2859 –1.8± 1.22

Inferior parietal left 0.2593 –1.18± 0.71

Superior parietal right 0.2573 –1.02± 0.51

Rostral middle frontal right 0.2422 –0.74± 0.65

Paracentral right 0.2267 –1.09± 0.81

Pars opercularis right 0.2245 –0.58± 0.71

Supramarginal left 0.2237 –1.3± 0.82

Lateral orbital frontal left 0.2145 –0.6± 0.77

Lateral occipital left 0.2127 –1.29± 0.62

Lingual left 0.2106 –1.27± 0.77

Insula right 0.2096 –0.94± 0.91

Superior temporal left 0.2081 –1.17± 0.78

Cuneus left 0.2072 –1.44± 0.78

Caudate left 0.2061 –0.73± 0.94

Cuneus right 0.1955 –1.68± 0.71

Superior temporal right 0.1879 –1.21± 0.88

Lingual right 0.1814 –1.34± 0.72

Hippocampus left 0.1767 –1.81± 1.17

Superior frontal right 0.1754 –0.55± 0.67

Lateral occipital right 0.155 –1.2± 0.7

Amygdala right 0.1542 –2.04± 1.69

Isthmus cingulate left 0.1541 –1.64± 0.83

Rostral anterior cingulate right 0.1454 –0.78± 0.82

Posterior-cingulate left 0.1433 –1.53± 0.72

Parahippocampal right 0.1428 –0.88± 1.04

(Continues)

TABLE 2 (Continued)

Graymatter regions of interest

(Desikan-Killiany Atlas) Weight

W-scores

in CDR≥ 1

(mean± SD)

Rostral anterior cingulate left 0.1414 –0.77± 0.76

Inferior temporal -0.143 –1.04± 0.71

Putamen right -0.1533 –1.56± 1.12

Frontal pole left -0.1601 –0.64± 0.81

Ventral diencephalon right -0.1868 –0.49± 0.4

Thalamus right -0.2259 –1.23± 0.83

Postcentral left -0.2306 –1.06± 0.71

Postcentral right -0.251 –1.28± 0.78

Medial orbital frontal right -0.2833 –0.73± 0.82

Abbreviations: CDR, Clinical Dementia Rating; DIAD-MC, dominantly

inherited Alzheimer’s disease mutation carrier; ROI, region of interest; SD,

standard deviation.

Notes: Individual ROI weights were the result of the optimization of the

logistic regression model. The weight indicates the degree of reliability of

an ROI in separating presymptomatic and demented DIAD mutation carri-

ers and does not necessarily correlate with the degree of atrophy.

AnROIwith a highpositive or negativeweight increases theprobability that

a given individual with atrophy in this region is CDR≥ 1 or CDR= 0, respec-

tively, whereas a weight closer to zero or zero indicates the ROI is less rele-

vant for separating these two outcomes.

one might improve the sensitivity of this risk score. Another limita-

tion is the use of dementia as a binary outcome, and future trials

may use time to reach an earlier, cognitively defined threshold. Nev-

ertheless, cognitive impairment as defined by CDR is still the major

outcome in most AD clinical trials. Last, while T1-weighted MRI and

EYO already provide a high degree of accuracy, other neuroimaging

measures,6,8,41,42,10–16,19 biochemical,6,8,12,18,43 or other markers of

AD44 can potentially be added to themodel to improve accuracy.

With all of these enhancements, prediction scores can be developed

into a powerful tool for clinical trials and may also facilitate treatment

planning in DIAD-MC and other people with high risk for developing

dementia.
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ing Information section at the end of the article.
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