7 research outputs found
Placental LPL gene expression is increased in severe intrauterine growth-restricted pregnancies
Intrauterine growth restriction (IUGR) is associated with reduced placental supply of nutrients to the fetus. Lipoprotein lipase (LPL) mediates the hydrolysis of triolycerides from maternal lipoproteins to obtain fatty acids. Here, we tested the hypothesis that placental LPL gene expression level is altered in pregnancies complicated by IUGR. To this purpose, 28 IUGR fetuses were identified during pregnancy and divided in two groups: 7 M-IUGR ['' mild '' IUGR, with normal umbilical artery pulsatility index (PI)] and 21 S-IUGR ('' severe '' IUGR, with abnormal PI). Moreover, 10 out of 28 IUGR pregnancies were associated with preeclampsia. Controls were 19 normal pregnancies delivering appropriate for gestational age (AGA) fetuses. Relative real-time quantification of LPL was carried out in RNA from placental chorionic villi by the Delta Delta Ct method, using beta-actin as normalizing gene. Placental LPL mRNA expression levels were significantly higher in IUGR than in AGA. In particular, significantly higher values were observed in S-IUGR, independent from the concomitant association with preeclampsia. No significant relationship was observed between placental LPL mRNA expression levels or gestational age. In conclusion, placental LPL mRNA gene expression is increased in severe IUGR, characterized by enhanced vascular placental resistances and alterations of placental nutrient transport
Long chain fatty acids and dietary fats in fetal nutrition
Long chain polyunsaturated fatty acids are essential nutrients for a healthy diet. The different kinds consumed by the mother during gestation and lactation may influence pregnancy, fetal and also neonatal outcome. The amount of fatty acids transferred from mother to fetus depends not only on maternal metabolism but also on placental function, i.e. by the uptake, metabolism and then transfer of fatty acids to the fetus. The third trimester of gestation is characterized by an increase of long chain polyunsaturated fatty acids in the fetal circulation, in particular docosahexaenoic acid, especially to support brain growth and visual development. These mechanisms may be altered in pathological conditions, such as intrauterine growth restriction and diabetes, when maternal and fetal plasma levels of long chain polyunsaturated fatty acids undergo significant changes. The aim of this review is to describe the maternal and placental factors involved in determining fetal fatty acid availability and metabolism, focusing on the specific role of long chain polyunsaturated fatty acids in normal and pathological pregnancies