92 research outputs found

    How Increased Motivation Levels Can Lead to Increased Levels of Muscular Strength and Cardiovasular Endurance

    Get PDF
    The purpose of many physical education programs in schools across the United States is to make students who pass the class physically educated students; hence the name of the class itself. To be physically educated means having a certain set of characteristics fostered by repeated exposure to constructive, effective physical education environments. One of the most important qualities a physically educated student possesses is that they value physical activity and its contributions to a healthy lifestyle. This is simple enough. However, when high school students on the brink of adulthood do not possess attitudes that value any type of regular physical activity, the goal of the physical education class becomes much harder to reach. Through differentiation of physical education curriculum, teachers are able to increase levels of student autonomy, therefore increasing their motivation to participate in regular physical activity. A peer-reviewed questionnaire can be administered to the class in order to gather a baseline reading of their motivation levels before strength and conditioning unit begins. After both the educator and the students completed the differentiated curriculum and physical activities, the questionnaire can be administered again. By comparing the results of the post-instructional motivational questionnaire and the recorded progress of each student on individual fitness logs, the effectiveness of the differentiated curriculum may be assessed

    Identifying Keys to Success in Innovative Teaching: Student Engagement and Instructional Practices as Predictors of Student Learning in a Course Using a Team- Based Learning Approach

    Get PDF
    When implementing innovative teaching techniques, instructors often seek to gauge the success of their methods. Proposing one approach to assessing classroom innovation, this study examines the ability of students’ ratings of engagement and instructional practices to predict their learning in a cooperative (team-based) framework. After identifying the factor structures underlying measures of student engagement and instructional practices, these factors were used as predictors of self-reported student learning in a general chemistry course delivered using a team-based learning approach. Exploratory factor analyses showed a four- factor structure of engagement: teamwork involvement, investment in the learning process, feelings about team-based learning, level of academic challenge; and a three-factor structure of instructional practices: instructional guidance, fostering self-directed learning skills, and cognitive level. Multiple linear regression revealed that feelings about team-based learning and perceptions of instructional guidance had significant effects on learning, beyond other predictors, while controlling gender, GPA, class level, number of credit hours, whether students began college at their current institution, expected highest level of education, racial or ethnic identification, and parental level of education. These results yield insight into student perceptions about team-based learning, and how to measure learning in a team-based learning framework, with implications for how to evaluate innovative instructional methods

    Radio Cherenkov signals from the Moon: neutrinos and cosmic rays

    Full text link
    Neutrino production of radio Cherenkov signals in the Moon is the object of radio telescope observations. Depending on the energy range and detection parameters, the dominant contribution to the neutrino signal may come from interactions of the neutrino on the Moon facing the telescope, rather than neutrinos that have traversed a portion of the Moon. Using the approximate analytic expression of the effective lunar aperture from a recent paper by Gayley, Mutel and Jaeger, we evaluate the background from cosmic ray interactions in the lunar regolith. We also consider the modifications to the effective lunar aperture from generic non-standard model neutrino interactions. A background to neutrino signals are radio Cherenkov signals from cosmic ray interactions. For cosmogenic neutrino fluxes, neutrino signals will be difficult to observe because of low neutrino flux at the high energy end and large cosmic ray background in the lower energy range considered here. We show that lunar radio detection of neutrino interactions is best suited to constrain or measure neutrinos from astrophysical sources and probe non-standard neutrino-nucleon interactions such as microscopic black hole production.Comment: 16 pages, 19 figure

    FORTE satellite constraints on ultra-high energy cosmic particle fluxes

    Full text link
    The FORTE (Fast On-orbit Recording of Transient Events) satellite records bursts of electromagnetic waves arising from near the Earth's surface in the radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna. We investigate the possible RF signature of ultra-high energy cosmic-ray particles in the form of coherent Cherenkov radiation from cascades in ice. We calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE) neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff. Some constraints on supersymmetry model parameters are also estimated due to the limits that FORTE sets on the UHE neutralino flux. The FORTE database consists of over 4 million recorded events to date, including in principle some events associated with UHE neutrinos. We search for candidate FORTE events in the period from September 1997 to December 1999. The candidate production mechanism is via coherent VHF radiation from a UHE neutrino shower in the Greenland ice sheet. We demonstrate a high efficiency for selection against lightning and anthropogenic backgrounds. A single candidate out of several thousand raw triggers survives all cuts, and we set limits on the corresponding particle fluxes assuming this event represents our background level.Comment: added a table, updated references and Figure 8, this version is submitted to Phys. Rev.

    Solitons, monopoles and duality: from sine-Gordon to Seiberg-Witten

    Get PDF
    An elementary introduction into the Seiberg-Witten theory is given. Many efforts are made to get it as pedagogical as possible, within a reasonable size. The selection of the relevant material is heavily oriented towards graduate students. The basic ideas about solitons, monopoles, supersymmetry and duality are reviewed from first principles, and they are illustrated on the simplest examples. The exact Seiberg-Witten solution to the low-energy effective action of the four-dimensional N=2 supersymmetric pure Yang-Mills theory with the gauge group SU(2) is the main subject of the review. Other gauge groups are also considered. Some related issues (like adding matter, confinement, string dualities) are outlined.Comment: 72 pages, LaTeX, macros included, a few references adde

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-?? aggregation

    Get PDF
    Amyloid-?? (A??) and metal ions are suggested to be involved in the pathogenesis of Alzheimer???s disease(AD). Cu(II) and Zn(II) can interact with A?? and facilitate peptide aggregation producing toxic oligomeric peptide species. Additionally, redox-active metal-bound A?? is shown to generate reactive oxygen species(ROS). Although the interaction of metal ions with A?? and the reactivity of metal-associated A?? (metal-A??) are indicated, the relationship between metal-A?? and AD etiology is still unclear. Some naturally occurring flavonoids capable of redirecting metal-A?? peptides into nontoxic, off-pathway A?? aggregates have been presented as valuable tools for elucidating the role of metal-A?? in AD. The structural moieties of the flavonoids responsible for their reactivity toward metal-A?? are not identified, however. To determine a structure-interaction-reactivity relationship between flavonoids and metal-free A?? or metal-A??, four flavonoids (morin, quercetin, galangin, and luteolin) were rationally selected based on structural variations(i.e., number and position of hydroxyl groups). These four flavonoids could noticeably modulate metal-A?? aggregation over metal-free analogue to different extents. Moreover, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) studies reveal that the direct interactions of the flavonoids with metal-free and/or metal-bound A?? are distinct. Overall, our studies demonstrate that alternation of the hydroxyl groups on the B and C rings of flavonoids (structure) could differentiate their metal/metal-free A??/metal-A?? interactions (interaction) and subsequently direct their effects on metal-free A?? and metal-A?? aggregation in vitro and A??-/metal-A??-triggered toxicity in living cells (reactivity), suggesting a structure-interaction-reactivity relationship.open
    corecore