344 research outputs found

    Interaction-Driven Equilibrium and Statistical Laws in Small Systems. The Cerium Atom

    Full text link
    It is shown that statistical mechanics is applicable to isolated quantum systems with finite numbers of particles, such as complex atoms, atomic clusters, or quantum dots in solids, where the residual two-body interaction is sufficiently strong. This interaction mixes the unperturbed shell-model (Hartree-Fock) basis states and produces chaotic many-body eigenstates. As a result, an interaction-induced statistical equilibrium emerges in the system. This equilibrium is due to the off-diagonal matrix elements of the Hamiltonian. We show that it can be described by means of temperature introduced through the canonical-type distribution. However, the interaction between the particles can lead to prominent deviations of the equilibrium distribution of the occupation numbers from the Fermi-Dirac shape. Besides that, the off-diagonal part of the Hamiltonian gives rise to the increase of the effective temperature of the system (statistical effect of the interaction). For example, this takes place in the cerium atom which has four valence electrons and which is used in our work to compare the theory with realistic numerical calculations.Comment: 25 pages, RevTeX, 5 figures in ps-format. Submitted to Phys. Rev.

    The 'law of requisite variety' may assist climate change negotiations:a review of the Kyoto and Durban meetings

    Get PDF
    Ashby wrote about cybernetics, during which discourse he described a Law that attempts to resolve difficulties arising in complex situations – he suggested using variety to combat complexity. In this paper, we note that the delegates to the UN Framework Convention on Climate Change (UNFCCC) meeting in Kyoto, 1997, were offered a ‘simplifying solution’ to cope with the complexity of discussing multiple pollutants allegedly contributing to ‘climate change’. We assert that the adoption of CO2eq has resulted in imprecise thinking regarding the ‘carbon footprint’ – that is, ‘CO2’ – to the exclusion of other pollutants. We propose, as Ashby might have done, that the CO2eq and other factors within the ‘climate change’ negotiations be disaggregated to allow careful and specific individual solutions to be agreed on each factor. We propose a new permanent and transparent ‘action group’ be in charge of agenda setting and to manage the messy annual meetings. This body would be responsible for achieving accords at these annual meetings, rather than forcing this task on national hosts. We acknowledge the task is daunting and we recommend moving on from Ashby's Law to Beer's Viable Systems approach

    A role for Phospholipase D in Drosophila embryonic cellularization

    Get PDF
    BACKGROUND: Cellularization of the Drosophila embryo is an unusually synchronous form of cytokinesis in which polarized membrane extension proceeds in part through incorporation of new membrane via fusion of apically-translocated Golgi-derived vesicles. RESULTS: We describe here involvement of the signaling enzyme Phospholipase D (Pld) in regulation of this developmental step. Functional analysis using gene targeting revealed that cellularization is hindered by the loss of Pld, resulting frequently in early embryonic developmental arrest. Mechanistically, chronic Pld deficiency causes abnormal Golgi structure and secretory vesicle trafficking. CONCLUSION: Our results suggest that Pld functions to promote trafficking of Golgi-derived fusion-competent vesicles during cellularization

    The design with intent method: A design tool for influencing user behaviour

    Get PDF
    The official published version can be found at the link below.Using product and system design to influence user behaviour offers potential for improving performance and reducing user error, yet little guidance is available at the concept generation stage for design teams briefed with influencing user behaviour. This article presents the Design with Intent Method, an innovation tool for designers working in this area, illustrated via application to an everyday human–technology interaction problem: reducing the likelihood of a customer leaving his or her card in an automatic teller machine. The example application results in a range of feasible design concepts which are comparable to existing developments in ATM design, demonstrating that the method has potential for development and application as part of a user-centred design process

    The geochemical cycling of reactive chlorine through the marine troposphere

    Get PDF
    Heterogeneous reactions involving sea‐salt aerosol in the marine troposphere are the major global source for volatile inorganic chlorine. We measured reactant and product species hypothesized to be associated with these chemical transformations as a function of phase, particle size, and altitude over the North Atlantic Ocean during the summer of 1988. Concentrations of HCl were typically less than 1.0 ppbv near the sea surface and decreased with altitude and with distance from the U.S. east coast. Concentrations of Cl volatilized from aerosols were generally equivalent to the corresponding concentrations of HCl and ranged from less than detection limits to 125 nmol m−3 STP. Highest absolute and percentage losses of particulate Cl were typically associated with elevated concentrations of anthropogenic combustion products. Concentrations of product nss SO42− and N03− in coarse aerosol fractions indicate that on average only 38% of measured Cl− deficits could be accounted for by the combined effects of acid‐base desorption and reactions involving nonacidic N gases. We hypothesize a mechanism for the Cl loss initiated by reaction of O3 at sea‐salt aerosol surfaces, generating Cl2 followed by rapid photochemical conversion of Cl2 to HCl via Cl atoms (Cl˙) and eventual recapture of HCl by the aerosol. Simulations with a zero‐dimension (0‐D) photochemical model suggest that oxidation by Cl˙ may be an important tropospheric sink for dimethyl sulfide and hydrocarbons. Under low‐NOx conditions, the rapid cycling of reactive Cl would provide a catalytic loss mechanism for O3, which would possibly explain the low O3 concentrations often observed above the world\u27s oceans
    corecore