1,313 research outputs found

    On the formation of hot DQ white dwarfs

    Get PDF
    We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support to the diffusive/convective-mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounted for by different masses of residual helium and/or different initial stellar masses. In the frame of this scenario, a correlation between the effective temperature and the surface carbon abundance in DQs should be expected, with the largest carbon abundances expected in the hottest DQs. From our calculations, we suggest that most of the hot DQs could be the cooler descendants of some PG1159 stars characterized by He-rich envelopes markedly smaller than those predicted by the standard theory of stellar evolution. At least for one hot DQ, the high-gravity white dwarf SDSS J142625.70+575218.4, an evolutionary link between this star and the massive PG1159 star H1504+65 is plausible.Comment: 4 pages, 2 figures. To be published in The Astrophysical Journal Letter

    Lyman-alpha wing absorption in cool white dwarf stars

    Full text link
    Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our stellar atmosphere program for the computation of synthetic spectra and colours of DA-type white dwarfs. Illustrative model atmospheres and spectral energy distributions are computed, which show that Ly-alpha broadening by atoms and molecules has a significant effect on the white dwarf atmosphere models. The inclusion of this collision-induced opacity significantly reddens spectral energy distributions and affects the broadband colour indices for model atmospheres with Teff<5000 K. These results confirm those previously obtained by Kowalski & Saumon (2006). Our study points out the need for reliable evaluations of H3 potential energy surfaces covering a large region of nuclear configurations, in order to obtain a better description of H-H2 collisions and a more accurate evaluation of their influence on the spectrum of cool white dwarfs.Comment: 11 pages, 12 figures, 1 table, to be published in MNRA

    Outer boundary conditions for evolving cool white dwarfs

    Get PDF
    White dwarf evolution is essentially a gravothermal cooling process, which,for cool white dwarfs, sensitively depends on the treatment of the outer boundary conditions. We provide detailed outer boundary conditions appropriate for computing the evolution of cool white dwarfs employing detailed non-gray model atmospheres for pure H composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Detailed non-gray model atmospheres are computed taken into account non-ideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman alpha quasi-molecular opacity. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 and 6100K for sequences with 0.60 and 0.90 M_sun, respectively. Detailed model atmospheres predict ages that are up to approx 10% shorter at log L/L_sun=-4 when compared with the ages derived using Eddington-like approximations at tau_Ross=2/3. We also analyze the effects of various assumptions and physical processes of relevance in the calculation of outer boundary conditions. In particular, we find that the Ly_alpha red wing absorption does not affect substantially the evolution of white dwarfs. White dwarf cooling timescales are sensitive to the surface boundary conditions for T_eff < 6000K. Interestingly enough, non-gray effects have little consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have not noticeable effects in their cooling rates, except throughout the Rosseland mean opacity.Comment: 6 pages, 9 figures, to be published in Astronomy and Astrophysic

    The ages and colours of cool helium-core white dwarf stars

    Get PDF
    The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-gray model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 solar masses and follow their evolution from the end of mass loss episodes during their pre-white dwarf evolution down to very low surface luminosities. We find that when the effective temperature decreases below 4000K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour-colour and colour-magnitude diagrams and we find that helium-core white dwarfs with masses ranging from approx. 0.18 to 0.3 solar masses can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M_V approx. 16.5. In view of these results, many low-mass helium white dwarfs could have had time enough to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.Comment: 11 pages, 9 figures. Accepted for publication in MNRA

    An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs

    Get PDF
    A secular variation of the gravitational constant modifies the structure and evolutionary time scales of white dwarfs. Using an state-of-the-art stellar evolutionary code and an up-to-date pulsational code we compute the effects of a secularly varying GG on the pulsational properties of variable white dwarfs. Comparing the the theoretical results obtained taking into account the effects of a running GG with the observed periods and measured rates of change of the periods of two well studied pulsating white dwarfs, G117--B15A and R548, we place constraints on the rate of variation of Newton's constant. We derive an upper bound G˙/G1.8×1010\dot G/G\sim -1.8\times 10^{-10} yr1^{-1} using the variable white dwarf G117--B15A, and G˙/G1.3×1010\dot G/G\sim -1.3\times 10^{-10} yr1^{-1} using R548. Although these upper limits are currently less restrictive than those obtained using other techniques, they can be improved in a future measuring the rate of change of the period of massive white dwarfs.Comment: 13 pages, 4 tables, 3 figures. To be published in the Journal of Cosmology and Astroparticle Physic

    The seismic properties of low-mass He-core white dwarf stars

    Get PDF
    We present here a detailed pulsational study applied to low-mass He-core white dwarfs, based on full evolutionary models representative of these objects. The background stellar models on which our pulsational analysis was carried out were derived by taking into account the complete evolutionary history of the progenitor stars, with special emphasis on the diffusion processes acting during the white dwarf cooling phase. We computed nonradial gg-modes to assess the dependence of the pulsational properties of these objects with stellar parameters such as the stellar mass and the effective temperature, and also with element diffusion processes. We also performed a g- and p-mode pulsational stability analysis on our models and found well-defined blue edges of the instability domain, where these stars should start to exhibit pulsations. We found substantial differences in the seismic properties of white dwarfs with M0.20MM_* \gtrsim 0.20 M_{\odot} and the extremely low-mass (ELM) white dwarfs (M0.20MM_* \lesssim 0.20 M_{\odot}). Specifically, gg-mode pulsation modes in ELM white dwarfs mainly probe the core regions and are not dramatically affected by mode-trapping effects by the He/H interface, whereas the opposite is true for more massive He-core white dwarfs. We found that element diffusion processes substantially affects the shape of the He/H chemical transition region, leading to non-negligible changes in the period spectrum of low-mass white dwarfs. Our stability analysis successfully predicts the pulsations of the only known variable low-mass white dwarf (SDSS J184037.78+642312.3), and also predicts both gg- and pp-mode pulsational instabilities in a significant number of known low-mass and ELM white dwarfs.Comment: 14 pages, 15 figures, 2 tables. To be published in Astronomy & Astrophysic

    Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 122+200

    Get PDF
    We put asteroseismological constraints on the internal rotation profile of the GW Vir (PG1159-type) star PG 0122+200. To this end we employ a state-of-the-art asteroseismological model for this star and we assess the expected frequency splittings induced by rotation adopting a forward approach in which we compare the theoretical frequency separations with the observed ones assuming different types of plausible internal rotation profiles. We also employ two asteroseismological inversion methods for the inversion of the rotation profile of PG 0122+200. We find evidence for differential rotation in this star. We demonstrate that the frequency splittings of the rotational multiplets exhibited by PG 0122+200 are compatible with a rotation profile in which the central regions are spinning about 2.4 times faster than the stellar surface.Comment: 8 pages, 6 figures, 2 tables. To be published in MNRA

    Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models

    Get PDF
    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprise all the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05M1.05M_{\odot} known to date. The asteroseismological analysis of a set of 42 stars gives the possibility to study the ensemble properties of the massive pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass high enough as to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. (2010) seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.Comment: 58 pages, 11 figures, accepted in Ap
    corecore