4,722 research outputs found

    Internal dissipation and heat leaks in quantum thermodynamic cycles

    Get PDF
    This is the final version. Available from American Physical Society via the DOI in this recordThe direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.European UnionSpanish MINECOCOST Actio

    Performance bound for quantum absorption refrigerators

    Get PDF
    This is the final version. Available from American Physical Society via the DOI in this recordAn implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.Spanish MICINNEuropean UnionCanary Islands GovernmentUniversity of Nottingha

    The National Institutes of Health Patient-Reported Outcomes Measurement Information System (PROMIS): a view from the UK.

    Get PDF
    This is the final version. Available from Dove Medical Press via the DOI in this record.The interest in patient-reported outcome measures (PROMs) continues to increase as recognition of their potential utility rises in an effort to make health systems more patient-centered. The US National Institutes of Health (NIH) Patient-Reported Outcomes Measurement Information SystemÂŽ (PROMISÂŽ) has used state of the art psychometric and statistical techniques to create a universal PROMs language, with potential application across the whole spectrum of health conditions, languages, and geographic locations. PROMIS offers a versatile platform where specific health domains are assessed using both standardized short forms and computerized adaptive tests, which are automatically tailored to individual patients. The scores of each health domain or a standardized profile of multiple domains are all scored on a common metric scale. PROMIS is increasingly recognized as the international gold standard for patient-centered assessment, although the use of these tools in the UK is limited. In this review, the developmental methodology of the PROMIS is described with discussion of its relevant strengths and limitations for use in the UK. We provide a case study of the largest application of the PROMIS tools in the UK as an example of straightforward integration into health-care research. Barriers to the uptake of PROMIS in the UK include the technology requirement, measurement tradition, and lack of a clear understanding of its benefits, and although potential stakeholders should cautiously consider its use, its impressive potential and increasing international utilization should be recognized

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    Perverse coherent t-structures through torsion theories

    Get PDF
    Bezrukavnikov (later together with Arinkin) recovered the work of Deligne defining perverse tt-structures for the derived category of coherent sheaves on a projective variety. In this text we prove that these tt-structures can be obtained through tilting torsion theories as in the work of Happel, Reiten and Smal\o. This approach proves to be slightly more general as it allows us to define, in the quasi-coherent setting, similar perverse tt-structures for certain noncommutative projective planes.Comment: New revised version with important correction

    From non-symmetric particle systems to non-linear PDEs on fractals

    Full text link
    We present new results and challenges in obtaining hydrodynamic limits for non-symmetric (weakly asymmetric) particle systems (exclusion processes on pre-fractal graphs) converging to a non-linear heat equation. We discuss a joint density-current law of large numbers and a corresponding large deviations principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016 conference "Stochastic Partial Differential Equations & Related Fields" in honor of Michael R\"ockner's 60th birthday, Bielefel

    Rapid bidirectional reorganization of cortical microcircuits.

    Get PDF
    Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio

    Dynamic screening of a localized hole during photoemission from a metal cluster

    Get PDF
    Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. Here we study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with Time-Dependent Density Functional Theory and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of its trajectory, the photoemitted electron interacts with the cluster electrons that pile up to screen the hole. Within our model, this gives rise to a significant reduction of the energy lost by the photoelectron. Thus, this is a velocity dependent effect that should be accounted for when calculating the average losses suffered by photoemitted electrons in metals.Comment: 15 pages, 5 figure
    • …
    corecore