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An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally
able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained
refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of
performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is
independent of the details of the system and the equilibrium temperatures of the external baths. We provide
design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures.
Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of
the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from
approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in
the operation of these machines is also investigated.
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I. INTRODUCTION

The study of quantum thermal machines has attracted
increasing attention over recent years. This is motivated on
one hand by the fundamental interest in understanding the
emergence of basic thermodynamic principles at the quantum
mechanical level [1–12], and on the other hand, by the potential
technological applications of these machines, for instance to
control the heat transport in nanoengineered devices [13–16].
In particular, several models have been proposed [1–7]
realizing quantum absorption chillers, that is, refrigerators in
which the external source of work is replaced by a heat bath.
A realization of such refrigerators, which has been introduced
in [5–7], consists of three interacting qubits, with a vanishingly
small interaction strength, each one in contact with a heat bath.
In spite of the technological challenges behind its physical
implementation, this machine can be experimentally realized,
e.g., with superconducting qubits or arrays of quantum dots
[14,15]. Furthermore, its operation may be understood in a
very neat way, providing a physical insight into the sources of
irreversibility in absorption chillers [7].

It has been predicted that, with a suitable choice of the
machine parameters, such a refrigerator can ideally attain a
coefficient of performance (COP) reaching the Carnot bound
εC [6]. However, we argue that the central assumption of
vanishing mutual interaction between the refrigerator qubits
cannot be realistically maintained. As long as the interaction
is finite, each bath will exchange energy with the whole
three-qubit system, rather than just locally with the single
qubit to which it is connected. This is usually the case with any
interacting multiparticle dissipative system. As we shall show,
the resulting delocalized dissipation prevents the refrigerator
from approaching the Carnot limit arbitrarily closely, thus
embodying a fundamental source of irreversibility that is
expected to arise in all concrete implementations.
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This situation is reminiscent of that of realistic heat
engines or cooling cycles, topical areas of study in finite-
time thermodynamics. There, the finite heat transfer rates
constitute the essential source of irreversibility which makes
the Carnot bound unattainable in practice. For this reason, an
important line of research deals with devising alternative, tight
performance bounds, such that some suitable figure of merit
of the machine under consideration is maximized [17–21].
In this spirit, we address the following question: What is the
highest achievable COP at maximum cooling power for the
quantum absorption refrigerators of Refs. [5–7]? Answering
this question would provide a practical performance bound
against which the efficiency of any future realization of these
machines could be benchmarked.

Another relevant and related question to ask is whether
the “quantumness” of the refrigerator, as revealed for instance
by the stationary quantum discord [22,23], plays any role in
its operation. This would help to unveil connections between
quantum correlations and efficient energy transport out of
equilibrium that so far have remained elusive.

In this paper we answer both questions. In the first place,
by considering unstructured bosonic baths and a consistent
dissipative qubit-bath interaction, we find that the COP at
maximum power is tightly upper bounded by 3

4εC , where
εC = (1 − Th

Tw
)/( Th

Tc
− 1) is the Carnot COP and {Tw,Th,Tw} are

the three temperatures between which the refrigerator operates.
We also give sufficient conditions to saturate this bound in the
limit of large temperature difference Tc/Th � 1. Second, we
issue a comprehensive analysis of stationary bipartite quantum
correlations in the various relevant qubit-qubit partitions.
Although a nonvanishing discord is always found in a specific
partition, it does not relate to the stationary heat flows,
reinforcing the idea that this family of thermal machines
operates in an effectively classical way [7], despite having
a genuinely quantum physical support.

The paper is organized as follows: In Sec. II we introduce
the microscopic model of the three-qubit refrigerator object of
our study. In Sec. III we address its reduced dynamics via a
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Lindblad-type master equation (whose derivation is deferred
to Appendix A) that allows for a consistent treatment of
dissipation. We also point out how the delocalized dissipation
effects, unavoidable in practice, prevent the refrigerator from
being maximally efficient. In Sec. IV we demonstrate the
existence of general upper bounds on the coefficient of
performance of the refrigerator at maximum cooling power,
and provide design prescriptions to saturate such bounds (a
supporting analytical proof is presented in Appendix B). In
Sec. V we report our complete study of stationary bipartite
quantum correlations in the system. Finally, we draw our
conclusions in Sec. VI.

II. PRELIMINARIES

Let us begin by introducing the total Hamiltonian of the
refrigerator. The Hilbert space of the system is HS = HS,w ⊗
HS,h ⊗ HS,c, where we label the three qubits as “work,” “hot,”
and “cold” (w, h, and c), after the heat baths to which each of
them is connected (see Fig. 1). Their free Hamiltonians are

H0,α = ωα |1α〉 〈1α| , (1)

where α = {w,h,c}, and we work in natural units h̄ = kB = 1.
The corresponding bosonic baths are given by

HB,α =
∑

λ

ωλa
†
α,λaα,λ. (2)

As local qubit-bath dissipative coupling, we choose terms of
the form

HD,α = √
γ
(
cxα

σxα
+ cyα

σyα

) ⊗
∑

λ

gλ(aα,λ − a
†
α,λ), (3)

where {cxα
,cyα

} ∈ R, and gλ ∝ √
ωλ to ensure flat spectral

densities J (ω) ∼ g2
α,λ/ωα,λ [24]. Here, we absorbed the order

of magnitude of J (ω) into the dissipation rate γ . With no
loss of generality, we can set cxα

= 1 and cyα
= 0. This kind

of system-environment coupling stands, e.g., for the dipole
interaction between a two-level atom and the electromagnetic
field at thermal equilibrium [24].

FIG. 1. (Color online) Schematic representation of the three-qubit
absorption refrigerator. The refrigerator qubits dissipate into their
respective baths, with equilibrium temperatures Tw > Th > Tc, at a
rate γ . The three-body interaction, of strength g, allows for energy
exchange between the refrigerator qubits, whose energy spacings ωα

are required to satisfy ωh = ωc + ωw .

It only remains to specify the three-body interaction
between the qubits, which in our case is

HI = g(|1w0h1c〉〈0w1h0c| + H.c.), (4)

where g is the interaction strength. The qubit energies are
chosen as ωh = ωc + ωw (ωh > ωw), so that the subspace
{|1w0h1c〉 , |0w1h0c〉} is approximately degenerate, as long as
g � 1.

The total Hamiltonian is then finally

HT =
∑

α

H0,α + HI +
∑

α

HD,α +
∑

α

HB,α. (5)

We now briefly explain how the operation of the refrigerator
may be understood (see [7] for details). In the ideal scenario
of vanishing g, the reduced stationary state of the work and
hot qubits, �∞

w,h ≡ Trc �, has high fidelity with τw ⊗ τh, where
τα = Z−1

α e−H0,α/Tα stands for the thermal state of qubit α at the
equilibrium temperature Tα , and � denotes the reduced state
of the three qubits after tracing out the heat baths.

It follows that the truncation of �∞
w,h into the two-

dimensional subspace HS,v of HS,w ⊗ HS,h spanned by
{|1w0h〉 , |0w1h〉}, which defines a “machine virtual qubit” v,
has an effective virtual temperature approximately given by

Tv ≡ ωh − ωw

ωh/Th − ωw/Tw

.

The interaction HI allows the cold qubit to exchange energy
with the machine virtual qubit, while being simultaneously
thermalized by the cold bath through HD,c. Suitable choice of
frequencies and temperatures may result in Tv < Tc, so that the
(nonequilibrium) stationary state �∞

c is effectively colder than
Tc. The excited state population deficit in �∞

c is compensated
by a net energy transfer from the cold bath (which stands for
the object to cool) into the refrigerator. This is what we shall
understand by cooling. The machine therefore just mediates
between the cold object at temperature Tc and a suitably filtered
virtual temperature Tv . Thermalization is then responsible for
cooling within the cooling window 0 � Tv � Tc, or in terms
of the cold frequency ωc

0 < ωc <
(Tw − Th)Tc

(Tw − Tc)Th

ωh. (6)

When Tv = Tc and always under the assumption of localized
dissipation, which is consistently realized only for vanishing
g, the refrigerator would in principle saturate the Carnot bound
εC on the COP [6].

III. REALISTIC MODELING OF THE DISSIPATION

A. The quantum master equation

We shall now extend the model of Refs. [5–7] to consis-
tently account for the dissipative dynamics of the refrigerator
in the realistic scenario of even very small but nonvanishing
coupling strength g. We can derive a general equation of
motion for the qubits from first principles, by employing
the standard Born-Markov assumption of weak-memoryless
system-environment interaction [24]. Such master equation,
whose complete derivation is reported in Appendix A, is
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written as

�̇ = −i[Href,�] +
∑

α

Dα[�]

= −i[Href,�] +
∑
α,ω


α,ω

(
Aα,ω�A†

α,ω − 1
2 {A†

α,ωAα,ω,�}+
)
,

(7)

where Href ≡ ∑
α H0,α + HI . The spectral correlation tensor,

denoted by 
α,ω, is proportional to the real part of the power
spectra of the bath correlation functions. Note that since the
heat baths are independent, the correlation tensor is diagonal
in α. We use its explicit form for electromagnetic radiation at
thermal equilibrium: 
α,ω ∝ ω3 exp (ω/2Tα) (sinh ω/2Tα)−1

[24].
The non-Hermitian Lindblad operator Aα,ω associated with

the bath α performs transitions of frequency ω at rate 
α,ω,
between the (g-independent) eigenstates of the refrigerator
Hamiltonian Href. They result from the decomposition of
the system-environment couplings (

√
γ σxα

= ∑
ω Aα,ω) as

eigenoperators of the refrigerator Hamiltonian ([Href, Aα,ω] =
−ωAα,ω). Note that the corrections to Href resulting from the
system-environment interaction (i.e., the Lamb shift Hamil-
tonian) have been neglected in Eq. (7), and that the rotating
wave approximation is implicit in its derivation. Therefore the
time scale of the system τS ∼ max {g−1,ω−1

α } must be much
smaller than the dissipation time, i.e., τS � γ −1.

Our dissipative system-environment coupling operators√
γ σxα

give rise to six open decay channels (for each α),
associated with the frequencies {±ωα, ± ωα ± g}. Consider,
for instance, the Lindblad operators within the cold dissipator
Dc: While the operators Ac,±ωc

produce transitions

|0w0h0c〉 ↔ |0w0h1c〉, |1w1h0c〉 ↔ |1w1h1c〉,
in which the cold bath exchanges energy locally with the cold
qubit only, the remaining operators, e.g., Ac,±ωc+g , are instead
responsible for processes like

|1w0h0c〉 ↔ (|1w0h1c〉 ± |0w1h0c〉)/
√

2,

|0w1h1c〉 ↔ (|1w0h1c〉 ∓ |0w1h0c〉)/
√

2,

in which bath c now exchanges energy with the work and hot
qubit as well, in a delocalized way. It is in this sense that we
refer to Dα as modeling a delocalized dissipation effect.

Of course, as the limit of vanishing coupling g is ap-
proached, the rates 
α,±ω+g and 
α,±ω−g become equal, and
all delocalized transitions tend to compensate each other.
For g = 0, only two (local) decay channels remain open for
each bath, namely Aα,±ωα

(0) ∝ σα,∓ ⊗ 1α , which stands for
the usual ladder operators for qubit α (the remaining qubits
are denoted as α). The idealized model of Refs. [5–7] is
recovered in this limit. Note that since the frequencies appear
exponentiated in the spectral correlation tensor, delocalized
dissipation effects are intuitively expected to be still relevant
(i.e., 
±ωα+g �� 
±ωα−g) even for arbitrarily small g ≪ 1 (see
Appendix A).

Equipped with the stationary solutions of the Markovian
master equation (7), we can compute the central quantities of
our study, namely, the rates at which energy from each bath is
fed into the system, i.e., the heat currents. These are given as

Q̇α = Tr{HrefDα[�∞]} [24]. In particular, we refer to Q̇c as the
cooling power. Therefore, the COP reads ε = Q̇c/Q̇w [2,6].

B. Delocalized dissipation and irreversibility

Let us now comment on our intuition linking delocalized
dissipation with irreversibility in the operation of the machine.
The Carnot COP εC is realized at the upper limit of the cooling
window Eq. (6), whenever ε = Q̇c/Q̇w = ωc/ωw [6]. This
would be the case (for arbitrary g) if one replaced the consistent
Eq. (7) with a “localized” master equation such as

�̇ = −i[Href,�] +
∑

α

Dα ⊗ 1α[�], (8)

like the one used in [5–7]. Here, the notation Dα ⊗ 1α stands
for some dissipator acting locally on qubit α, in spite of
using the full interacting Hamiltonian Href = ∑

α H0,α + HI

to account for the free dynamics.
Recall from the preceding considerations that such a

localized model for the dissipation is only physically consistent
in the limit of strictly vanishing g [25]. On the contrary, if
the realistic delocalized description of Eq. (7) is adopted,
given any value of the qubit-qubit interaction, no matter
how small, it becomes impossible to approach εC arbitrarily
closely, as illustrated in Fig. 2. There we plot the performance
characteristics for the refrigerator according to Eq. (7) (solid
red) and as results from the localized master equation of the
type of Eq. (8) [5–7]. In both cases, the operation temperatures
are Th = 66.25 and Tc = 4.78. We also fix Tw = 127.33,
ωw = 56.87, g = 0.1, γ = 10−6, and pi = 10−3. The only
remaining free parameter ωc is varied from 0 to the upper limit
of the cooling window Eq. (6) ωc, max, and the cooling power
Q̇c for each configuration is plotted versus the corresponding
COP, normalized by the Carnot bound εC . The cooling
powers are also normalized by their maximum values Q̇c, max:
8.39 × 10−6 and 1.27 × 10−6, respectively. Clearly, ωc = 0
corresponds to Q̇c = ε = 0. In the ideal case of Eq. (8),
ωc → ωc, max results in ε → εC and Q̇c → 0. However, any
irreversibility would yield a COP not monotonically increasing

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0

c c, max

C

FIG. 2. (Color online) Comparison of the performance charac-
teristics of the quantum absorption refrigerator according to the
delocalized dissipative scheme of Eq. (7) (solid red) and to a
“localized” master equation of the type Eq. (8) (dashed blue) for
the same choice of parameters (see text for details).
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with ωc, and therefore a closed performance characteristic, as
shown. This suggests that the unavoidable delocalization in
the dissipative dynamics makes the refrigerator nonideal and
somewhat wasteful, thus introducing a fundamental source of
irreversibility that prevents it from cooling at the Carnot COP
in practice.

IV. PERFORMANCE BOUNDS AT MAXIMUM POWER

As we have just seen, in this three-qubit quantum absorption
refrigerator, εC cannot be approached arbitrarily closely in
practice. It is therefore crucial to introduce an alternative tight
bound on some performance indicator, such that its saturation
would mark the functioning of the refrigerator as effectively
optimal. A sensible figure of merit in this context is, for
instance, the COP ε∗ at maximum cooling power Q̇c, max. One
can then seek to devise a general upper bound for such a
performance indicator, and to characterize a region within
the space of the control parameters {ωw,Tw} that allows for
its saturation. This would provide useful work points for the
efficient implementation of the machine.

To investigate this issue, we run extensive numerics on the
stationary states of Eq. (7), globally optimizing ε∗ over all free
parameters of the refrigerator, always under the consistency
constraints implied by the Born-Markov and rotating wave
approximations. We found that ε∗ is tightly upper bounded by

ε∗ � 3
4εC. (9)

This is illustrated in Fig. 3, where ε∗/εC was plotted for 105

quantum absorption refrigerators whose free parameters were
all sampled at random.

In order to get analytical insight into the role and possible
origin of the performance limit, we resort to the much
simpler mathematical description based on the localized
master equation of Refs. [5–7]. Even though the irreversibility
associated with delocalized dissipation is completely absent
in this ideal case, meaning that the COP can reach εC (albeit

FIG. 3. (Color online) COP at maximum cooling power for 105

random refrigerators, calculated from the stationary states of Eq. (7).
The operation temperatures Tc and Th, as well as Tw , ωw , g, and γ ,
were chosen completely at random, always satisfying the constraints
kBTα � γ (Born-Markov approximation) and g � γ (rotating wave
approximation). The value of ωc yielding Q̇c, max was found in each
case (therefore fixing ωh = ωc + ωw) and the corresponding ε∗/εC

plotted.

at vanishing power), the COP at maximum cooling power is,
nonetheless, still tightly upper bounded when optimization
over all parameters is carried out. Specifically, a similar
numerical analysis shows that the bound turns out to be
1
2εC for the localized model. One can actually show this
analytically, given Tw and ωw such that (i) ωw/Tw,h � 1 and
(ii) ωc,max/Tc � 1 (see Appendix B for a detailed proof),
such a performance bound is saturated in the limit of large
temperature difference Tc/Th � 1.

Interestingly, coming back now to the realistic situation
modeled by Eq. (7), with a consistent treatment of delocalized
dissipation, one sees that conditions (i) and (ii) are also
sufficient to saturate the 3

4εC performance bound on the COP at
maximum power when working at large difference between the
operating temperatures. These conditions, therefore, provide
the desired design prescriptions for the practical implementa-
tion of efficient quantum absorption refrigerators of this kind.
However, it is in order to remark that those are just sufficient
conditions for optimal performance, and do not need to be
necessarily met in order to attain a nearly optimal COP at
maximum power: for instance, even the machine in Fig. 2
cools very close to the bound, despite having ωw/Th ∼ 1.

Finally, note that the fact that the performance bound differs
quantitatively when the oversimplified localized picture is used
instead ( 1

2 vs 3
4 as a fraction of εC) should not be surprising,

as the underlying dissipative dynamics also encloses essential
differences. The important points, however, are that the bound
is also tight in that case, and that the analytical expression
of the idealized stationary state is tractable enough and even
proves insightful to obtain prescriptions for the saturation of
the 3

4εC bound in the realistic model of Eq. (7).

V. STATIONARY QUANTUM CORRELATIONS

We finally investigate the stationary bipartite quantum
correlations established in the refrigerator, focusing on the
realistic dissipative model of Eq. (7). Given the structure of �∞,
the reduced states within the 2 × 2 bipartitions w-h, w-c, and
h-c are diagonal and therefore, unentangled and completely
classical. We then consider the only two-dimensional sub-
spaces of

⊗
α HS,α which are in direct interaction according to

Href, namely, those corresponding to the machine virtual qubit
and the cold qubit. While no entanglement is found, more
general quantum correlations measured by quantum discord
[22,23,26] are always present in this relevant bipartition [27].
The structure of stationary quantum discord, analyzed in
detail in the following, does not however exhibit any specific
relationship either with the maximization of Q̇c or ε, or with
the behavior of ε∗ or Q̇c, max, as the control parameters {ωw,Tw}
are varied. This supports the conclusion that the only essential
quantum ingredient exploited by the machine is in fact the
discreteness of its energy spectrum [5–7].

We recall that quantum discord is defined as

D(�AB) ≡ I(�AB) − I(σAB), (10)

where the mutual information I(�AB) quantifies total correla-
tions in the bipartite state �AB , and σAB is the postmeasurement
state after a minimally disturbing projective measurement on
B. We refer the reader to Refs. [22,23,26] for details and
interpretations of discord.
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The dissipative dynamics of Eq. (7) annihilates three-qubit
X states that have �∞

36 = �∞
63 as the only nonzero matrix

elements outside the main diagonal when expressed in the
computational basis. If any of the qubits is traced out, the
remaining 2 × 2 density matrix is diagonal and only involves
the populations of �∞. Therefore, entanglement and quantum
discord in the bipartitions w-h, w-c, and h-c vanish.

It is interesting to look instead at the only two-dimensional
subspaces of

⊗
α HS,α which are placed in direct interaction

through HI , that is, the machine virtual qubit and the cold
qubit. The corresponding reduced state reads

ρ∞
vc = P�∞P

trP�∞P

with P ≡ |1w0h〉 〈1w0h| + |0w1h〉 〈0w1h|
+ |0c〉 〈0c| + |1c〉 〈1c| .

When expressed in the basis {|1w0h〉, |0w1h〉} ⊗ {|0c〉, |1c〉},
the two-qubit X state ρ∞

vc is given by

�∞
vc = 1

N

⎛
⎜⎜⎜⎝

�∞
55 0 0 0

0 �∞
66 �∞

36 0

0 �∞
36 �∞

33 0

0 0 0 �∞
44

⎞
⎟⎟⎟⎠ , (11)

where N is the normalization factor. According to
the positivity-of-the-partial-transpose separability criterion
[28,29], the state �∞

vc is entangled if and only if

�∞
36 >

1

2

�∞
44 + �∞

55

�∞
44 − �∞

55

. (12)

However, our stationary states are such that �∞
36 � �∞

jj for
j ∈ {1, . . . ,8}, and therefore no bipartite qubit entanglement
can be present in them. On the contrary, one always finds
nonzero stationary quantum discord between the machine
virtual qubit and the cold qubit. In the search for the least
disturbing local measurements for its quantification, we will
restrict ourselves to projective measurements only. Since �∞

vc

is an X state, its discord can be computed analytically, using
the formulas of Ref. [30].

In the first place, we fixed Tα and ωw and looked at
the stationary total [I(�vc)], quantum [D(�vc)], and classical
[I(σvc)] correlations between the machine virtual qubit and
the cold qubit, to see whether they play any role in the
maximization of the cooling power Q̇c for 0 < ωc � ωc, max

(see Fig. 4). Similarly to Q̇c, for intermediate values of
ωw all correlations are peaked around a certain value of ωc

which nevertheless usually differs from the frequency ωc,∗
that maximizes Q̇c [cf. Figs. 4(c) and 4(d)]. Smaller work
frequencies yield a monotonic behavior of correlations instead,
as shown in Fig. 4(b), while larger values of ωw reveal a more
intricate structure [see Fig. 4(f)].

In Figs. 4(b) and 4(d), the measurements that max-
imize I(σvc) consist in, e.g., projections onto |+c〉 ≡
(|0c〉 + |1c〉) /

√
2 and |−c〉 ≡ (|0c〉 − |1c〉) /

√
2 for any ωc.

However, in Fig. 4(f) projective measurements in the compu-
tational basis of the cold qubit become optimal in the interval
14 � ωc � 66. These discontinuous changes in the optimal
measurement schemes result in a nondifferentiable classical
correlations and quantum discord. In all three cases, the COP
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FIG. 4. (Color online) Left column: Cooling power Q̇c as a
function of ωc at fixed Tα , ωw , g, and γ . Right column: Total
(dot-dashed purple), classical (dashed red), and quantum (solid blue)
correlations for Tw = 180, Th = 95, Tc = 80, g = 0.1, γ = 10−6, and
ωw = 10 (a), (b), ωw = 15 (b), (c), and ωw = 30 (d), (e). The gray
dotted line marks the position of the frequency ωc,∗ maximizing Q̇c.

increases linearly with ωc and starts to decrease only as ωc, max

is approached. It seems therefore clear that the maximization
of Q̇c and ε are not related in any way to the only nonvanishing
2 × 2 stationary quantum correlations in the system.

We also ruled out any possible interplay between quantum
discord at ωc,∗ and the maximization of ε∗ and Q̇c, max, using
ωw and Tw as control parameters. In Fig. 5 we plot ε∗
and the corresponding quantum discord as a function of ωw

for different temperatures Tw. After increasing abruptly for
small work frequencies, the COP at maximum power starts
to decay as ωw grows. When it comes to its temperature
dependence, ε∗ seems to increase with Tw as shown in Fig. 5.
In Fig. 5(b), we see that for small ωw, quantum discord is also
an increasing function of the work frequency. The optimal
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FIG. 5. (Color onlne) (a) COP at maximum cooling power ε∗
and (b) quantum discord at ωc,∗ as functions of ωw for different
temperatures Tw . Parameters were chosen as Th = 17, Tc = 13, g =
0.1, and γ = 2.5 × 10−5, and Tw = 50 (dotted green), Tw = 100 (dot-
dashed blue), Tw = 150 (dashed orange), and Tw = 200 (solid red).

measurement scheme changes from {|+c〉 〈+c| , |−c〉 〈−c|}
to {|0c〉 〈0c| , |1c〉 〈1c|} at some ω̃w, which produces a sharp
maximum. For ωw > ω̃w, discord decays monotonically. At
any fixed ωw, it is decreasing with the work temperature. The
corresponding Q̇c, max grows exponentially with ωw and also
increases as a function of Tw.

Even if the maximum discord at fixed Tw does not coincide
with the maximum of ε∗, it still marks a useful operation point
of the refrigerator where a certain compromise between Q̇c, max

and ε∗ is achieved. Our results also suggest that the COP at
maximum power and the corresponding cooling power are
enhanced, at fixed ωw (and sufficiently small g), at the expense
of the destruction of quantum correlations. It is possible,
however, to increase these two figures of merit and yet build
more quantumness in the system if one also leaves ωw as a
free parameter.

From all the preceding we see that there is no clear
relationship between the quantumness of the bipartite qubit-
qubit correlations established in the stationary regime and
the efficient performance of the refrigerator. In the idealized
case of vanishing g, the ability of this quantum machine to
saturate the Carnot COP comes from the discreteness of its
energy spectrum, in contrast with any continuous “classical”
counterpart [7]. Actually this discreteness and thermalization
are the only essential building blocks for the basic operation
of the refrigerator. It may not be surprising, then, that any
residual quantumness of correlations appears in the system
as a by-product rather than as fundamental resource for its
enhanced performance.

VI. CONCLUSIONS

We consistently studied the three-qubit quantum absorption
chillers introduced in [5–7], adopting a physically meaningful
system-bath interaction model. The resulting delocalized dis-
sipation effects prevent the refrigerator a priori from cooling
arbitrarily closely to the Carnot COP εC , thus introducing
unavoidable irreversibility in the stationary cooling process.

As an alternative to εC , a more useful performance bound
had to be considered instead to assess the optimality of a given
realization of such thermal devices. We chose to look at the

COP ε∗ at maximum cooling power Q̇c, max and found that
global optimization over all model parameters yields a tight
upper bound on ε∗ of 3

4εC . Sufficient conditions to saturate it
in the limit of large temperature difference were also given.

The efficient performance of these machines was not found
to relate in any obvious way to stationary bipartite total,
classical, or quantum stationary correlations present in the
system. Understanding the role played by the correlation
properties of the environment in the performance limit could
render the practical prescriptions for the realization of even
more efficient quantum refrigerators accessible with present-
day technology [14,15] and will warrant further investigation.
The extension of our results to a wider range of quantum
absorption chillers will also be a subject of a future dedicated
study.
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APPENDIX A: DERIVATION OF THE MARKOVIAN
MASTER EQUATION

We will now consistently build the Markovian master
equation Eq. (7) for the reduced state � of the three refrigerator
qubits. The process starts by taking the interaction picture
with respect to the free Hamiltonian HF = ∑

α H0,α + HI +∑
α HB,α . An initial preparation uncorrelated between system

and environment is chosen so that ρ (0) = � (0) ⊗ χ , where
χ ≡ ⊗

α Z−1
α e−HB,α/Tα . This choice guarantees on the one

hand that the reduced evolution is a completely positive (and
trace preserving) dynamical map [31] and on the other that
the average of the bath operator Bα ≡ ∑

λ gλ(aα,λ − a
†
α,λ)

vanishes initially, trBBαρ (0) = 0, and actually also at any later
time as long as the Born approximation holds (see below).

The interaction picture Liouville–von Neumann equation
for ρ (t) is then suitably manipulated. Next, the Born or weak
dissipation approximation, according to which ρ (t) � � (t) ⊗
χ , is performed. The Markov approximation, which consists
in neglecting any memory effects in the reduced evolution,
finally leads to (see [24] for details)

˙̃� =−
∑
α, β

∫ ∞

0
ds trB[HD,α(t),[HD,β(t − s),�̃(t) ⊗ χ ], (A1)

where �̃ (t) ≡ eiHF t� (t) e−iHF t stands for the interaction pic-
ture reduced state of the refrigerator qubits, and HD,α (t) ≡
eiHF tHD,αe−iHF t . The dynamical map �(t,0) evolving �̃ (0)
into �̃ (t) that results from Eq. (A1) has the semigroup property
under map composition: � (t,0) � (s,0) = � (t + s,0), which
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implies that Eq. (A1) can be cast in the standard Lindblad
form [32] of Eq. (7).

In order to achieve this, we shall decompose the system
operators σxα

from the system-baths interaction term HI =∑
α σxα

⊗ Bα into eigenoperators Aα,ω of Href such that

σxα
=

∑
ω

Aα,ω, [Href,Aα,ω] = −ωAα,ω. (A2)

The non-Hermitian Lindblad or jump operators Aα,ω are
defined as

Aα,ω =
′∑

ωk−ωj =ω

|j 〉〈j |σxα
|k〉〈k|, (A3)

where |j 〉 is an eigenstate of Href with energy ωj and
nondegeneracy is assumed. The eigenvalues of Href are
{0,ωw,2ωh,ωc,ωw + ωh,ωh + ωc,ωh − g,ωh + g} and their
corresponding eigenvectors

|1〉 = |0w0h0c〉, |2〉 = |1w0h0c〉, |3〉 = |1w1h1c〉,
|4〉 = |0w0h1c〉, |5〉 = |1w1h0c〉, |6〉 = |0w1h1c〉,
|7〉 = (|1w0h1c〉 − |0w1h0c〉)/

√
2,

|8〉 = (|1w0h1c〉 + |0w1h0c〉)/
√

2.

Therefore, from Eq. (A3) it is easy to see that there are
only six open decay channels (i.e., transition frequencies ω =
ωj − ωk with nonzero Aα,ω) for each bath α, corresponding to
{±ωα, ± ωα ± g}. These jump operators are explicitly

Aw,ωw
= √

γ (|1〉 〈2| + |6〉 〈3|) ,

Aw,ωw+g = √
γ (|4〉 〈8| − |7〉 〈5|) /

√
2,

Aw,ωw−g = √
γ (|4〉 〈7| + |8〉 〈5|) /

√
2,

Ah, ωh
= √

γ (|2〉 〈5| + |4〉 〈6|) ,

Ah, ωh+g = √
γ (|7〉 〈3| + |1〉 〈8|) /

√
2,

Ah, ωh−g = √
γ (|8〉 〈3| − |1〉 〈7|) /

√
2,

Ac, ωc
= √

γ (|1〉 〈4| + |5〉 〈3|) ,

Ac, ωc+g = √
γ (|2〉 〈8| − |7〉 〈6|) /

√
2,

Ac, ωc−g = √
γ (|2〉 〈7| + |8〉 〈6|) /

√
2 .

The remaining Lindblad operators are just given by the adjoint
of these, since A†

α,ω = Aα,−ω.
The interaction picture system-environment coupling

Hamiltonian may now be written as

HI (t) = eiHF tHI e
−iHF t =

∑
α,ω

e−iωtAα,ω ⊗ Bα (t) , (A4)

where Bα (t) = ∑
λ gλ(aλe

−iωλt − a
†
λe

iωλt ). Gathering all this
back into Eq. (A1) yields

˙̃� =
∑

α, ω, ω′
ei(ω′−ω)tCα,ω

(
Aα,ω�̃A†

α,ω′ − A†
α,ω′Aα,ω�̃

)

+ H.c., (A5)

where the (complex) bath correlations Cα, ω are defined as

Cα,ω =
∫ ∞

0
ds eiωs trB χBα(t)Bα (t − s) ≡ 1

2

α, ω + iSα, ω.

(A6)

Note that due to our choice of the initial preparation and pro-
vided that the Born approximation holds, all bath correlations
depending on trB χBα (t) Bβ (t − s) with α �= β vanish, i.e.,
the baths are independent.

The details of Cα,ω may also be worked out, exploiting
the fact that the baths were prepared in a thermal equilibrium
state [24]. Choosing gλ ∝ √

ωλ, the spectral correlation tensor

α,ω reads


α,ω ∝ ω3eβω/2

(
sinh

βω

2

)−1

, (A7)

where the proportionality constant is of order 1 and may be
absorbed into γ .

Another important step towards the derivation of the
master equation (7) is the assumption that the typical system
time scales |ω − ω′|−1 with ω �= ω′ are much smaller than
the relaxation time γ −1, which allows one to discard all
rapidly oscillating terms ω �= ω′ that average to zero in a
coarse-grained picture of the reduced dynamics (rotating wave
approximation). This leaves (we refer again to [24] for details)

˙̃� =
∑
α,ω


α,ω

(
Aα,ω�̃A†

α,ω − 1

2
{A†

α,ωAα,ω,�̃}+
)

, (A8)

where we have discarded the Lamb shift term
−i

∑
α,ω Sα,ω[A†

α,ωAα,ω,�̃] as is usually done when working
in the quantum optical regime.

The only thing that remains to be done in order to recover
Eq. (7), is to transform Eq. (A8) back into the Schrödinger
picture by noting that

�̇ = −iHF e−iHF t �̃eiHF t + ie−iHF t �̃eiHF tHF + e−iHF t ˙̃�eiHF t .

(A9)

This immediately yields Eq. (7) if one identifies Aα,ω with
e−iHF tAα,ωeiHF t = eiωtAα,ω.

The reduced dynamics generated by Eq. (7) may be
understood as a stochastic process in the Hilbert state space of
the refrigerator qubits, in which the deterministic evolution of
any pure state is interrupted by discontinuous quantum jumps
|ψ〉 �→ N−1Aα,ω |ψ〉, occurring at rates 
α,ω. The density
matrix � (t) at any time t is recovered as an ensemble average
over stochastic trajectories [24,33].

It is clear that all interaction picture jump operators
Aα,ω introduced above can produce delocalized dissipation
(quantum jumps) in the sense discussed in the main article.
As g gets closer to zero, the rates 
α,±ωα+g and 
α,±ωα−g

linearly approach each other, meaning that the jump processes
Aα,±ω+g and Aα,±ω−g become equally likely, so that their
delocalized contributions start to compensate. In the strict
limit of g = 0, only one transition frequency (ωα) is left
for each bath, the corresponding Lindblad operator being just
the sum Aα,±ω + Aα,±ω+g + Aα,±ω−g ∝ σα,∓ [cf. Eq. (A3)],
which is a localized jump operator. Note that even if the
difference |
α,±ω+g − 
α,±ω−g| depends linearly on g � 1,
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the exponentials in Eq. (A7) make it extremely sensitive to the
qubit-qubit interaction strength, so that even a slight departure
from the noninteracting case can make delocalized dissipation
effects very important.

Let us finally comment on the underlying assumptions
leading to Eq. (7). Even though the rotating wave approx-
imation makes the problem much more tractable, it is not
essential and one could just avoid it [cf. Eq. (A5)]. Situations
in which the dissipation times become comparable to the
system time scale (i.e., the realm of quantum Brownian
motion) may then be accounted for, conceivably resulting
in qualitative differences. It becomes important to account
for the non-negligible renormalization effects of the system-
environment interaction on the system itself in these cases. In
contrast, within the quantum optical regime, the rotating wave
approximation slightly modifies only the reduced dynamics
but not the stationary states of the refrigerator, thus leaving
our results unaffected.

If the baths are assumed to have some structure, the
Markov approximation cannot be consistently performed.
Nevertheless, as long as the dissipation strength remains
sufficiently weak so that the Born approximation is still in
place, no qualitative differences should be expected from what
we report in the main article. Finally, if the dissipation becomes
strong enough, the thermalization of a single isolated qubit in
contact with its corresponding bath is no longer guaranteed,
so that the basic operation of the refrigerator is compromised.

APPENDIX B: ANALYTICAL DERIVATION OF
THE PERFORMANCE BOUND 1

2 εC UNDER
LOCALIZED DISSIPATION

Considering the localized dissipative model of [5–7], we
shall now prove that its COP at maximum power ε∗ is upper
bounded by 1

2εC , whenever the conditions

ωw � Tw,h, (i)

ωw � τ ≡ Tw(Th − Tc)

Tw − Th

(ii)

are met, at large temperature difference Tc/Th � 1.
Proof. Our starting point will be Eqs. (18) and (8)–(10) in

Ref. [6], where the cooling power Q̇c was given as

Q̇c,w = q
�

2 + q2

2g2 + ∑
α qα + ∑

αβ Qαβ�αβ

ωc,w (B1)

and

� = e−(ωw+ωc)/Th − eωw/Twe−ωc/Tc

(1 + eωw/Tw )(1 + e(ωw+ωc)/Th )(1 + eωc/Tc )
, (B2a)

�αβ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1+e−ωα/Tα

e
−ωβ /Tβ

1+e
−ωβ /Tβ

+ e−ωα/Tα

1+e−ωα/Tα

1
1+e

−ωβ /Tβ
(α, β �= h),

e−ωα/Tα

1+e−ωα/Tα

e
−ωβ /Tβ

1+e
−ωβ /Tβ

+ 1
1+e−ωα/Tα

1
1+e

−ωβ /Tβ
(β �= α = h),

1
1+e−ωα/Tα

1
1+e

−ωβ /Tβ
+ e−ωα/Tα

1+e−ωα/Tα

1
1+e

−ωβ /Tβ
(α �= β = h),

e−ωα/Tα

1+e−ωα/Tα

1
1+e

−ωβ /Tβ
+ 1

1+e−ωα/Tα

1
1+e

−ωβ /Tβ
(α = β = h).

(B2b)

Here, q, qi , and Qαβ depend only on the three, possibly
different, dissipation rates pi , while � and �αβ depend on

all temperatures and frequencies. All we need to do is to
find the ωc,∗ that maximizes Eq. (B1) and then compute the
corresponding ε∗.

First of all, note that conditions (i) and (ii) imply ωc/Tc � 1
for any ωc < ωc, max, i.e., within the cooling window

1 > e−ωc/Tc > e−ωc, max/Tc > e−ωw/τ � 1 − ωw

Tw

. (B3)

Due to the ordering Tw > Th > Tc in the bath’s equilib-
rium temperatures, we must also have ωc/Th � 1. Since
ωh = ωw + ωc, this translates into ωh/Th � 1. Therefore,
conditions (i) and (ii) can be alternatively stated as

ωw,h,c � Tw,h,c. (B4)

Furthermore, in the limit of large temperature difference
Tc/Th � 1, assuming that Tc/Th is at least of order ωw/Th

and ωw/τ , we also have

ωc

Th

� ωc, max

Th

= ωw

τ

Tc

Th

� ωw

Th

. (B5)

As a consequence, Eqs. (B2a) and (B2b) can be expressed as

� � 1

8
(e−ωw/Th − eωw/Twe−ωc/Tc ) + O

(
ωα

Tα

)
, (B6a)

�αβ � 1

2
+ O

(
ωα

Tα

)
. (B6b)

In this regime, the denominator of Q̇c as given in Eq. (B1)
becomes independent of ωc, so that its maximization is
equivalent to that of Eq. (B6a). This yields(

1 − ωc,∗
Tc

)
e(1−ωc,∗/Tc) = e(ωw/Tw−ωw/Th). (B7)

The solution to an equation of the form xex = a may be
expressed in terms of the Lambert W function or product
logarithm [34], as x = W0 (ae). Therefore ωc,∗ reads

ωc,∗ = Tc[1 − W0(e(1+ωw/Tw−ωw/Th))] . (B8)

Among the properties of W0 (z), we shall make use of its series
expansion around z = e,

W0 (z) = 1

2
+ z

2e
+ · · · . (B9)

Taking (i) into account again, e(1+ωw/Tw−ωw/Th) � 1 +
ωw/Tw − ωw/Th, which, combined with Eqs. (B8) and (B9),
results in

ωc,∗ � ωwTc

2

(
1

Th

− 1

Tw

)
. (B10)

The COP at maximum cooling power ε∗ = ωc,∗/ωw [6]
normalized by εC may be thus approximated by

ε∗
εC

� Tc

2εC

(
1

Th

− 1

Tw

)
= 1

2

(
1 − Tc

Th

)
� 1

2
, (B11)

which saturates in the limit of large temperature difference
Tc/Th � 1. �
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