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Mature neocortex adapts to altered sensory input by changing neural
activity in cortical circuits. The underlying cellular mechanisms remain
unclear. We used blood oxygen level-dependent (BOLD) functional mag-
netic resonance imaging (fMRI) to show reorganization in somatosen-
sory cortex elicited by altered whisker sensory input. We found that
there was rapid expansion followed by retraction of whisker cortical
maps. The cellular basis for the reorganization in primary somatosen-
sory cortex was investigated with paired electrophysiological record-
ings in the periphery of the expanded whisker representation. During
map expansion, the chance of finding a monosynaptic connection
between pairs of pyramidal neurons increased 3-fold. Despite the rapid
increase in local excitatory connectivity, the average strength and syn-
aptic dynamics did not change, which suggests that new excitatory
connections rapidly acquire the properties of established excitatory con-
nections. During map retraction, entire excitatory connections between
pyramidal neurons were lost. In contrast, connectivity between pyram-
idal neurons and fast spiking interneurons was unchanged. Hence, the
changes in local excitatory connectivity did not occur in all circuits in-
volving pyramidal neurons. Our data show that pyramidal neurons are
recruited to and eliminated from local excitatory networks over days.
These findings suggest that the local excitatory connectome is dynamic
in mature neocortex.

Keywords: connectome, cortical microcircuit, experience-dependent
plasticity, fMRI, inhibition, rewiring

Introduction

Behavioral experience, learning, and memory result in re-
organization of neural circuitry in the brain (Martin et al. 2000;
Gilbert and Li 2012). Studies of the reorganization at a cellular
level have focused on 3 broad classes of plasticity mechanism:
Changes in synaptic strength, altered excitability of neurons,
and rewiring of neural circuits (Martin et al. 2000; Zhang and
Linden 2003; Feldman 2009; Barnes and Finnerty 2010).
However, despite intensive investigation, we have limited un-
derstanding of how cellular plasticity mechanisms enable the
neocortex to reorganize in response to sensory and motor
experience.

Unraveling the cellular plasticity mechanisms that cause re-
organization of cortical maps has been difficult because the
findings have varied with the experimental protocol. However,
cortical reorganization induced by nontraumatic alterations to

sensory experience and by training on a task are thought to be
mechanistically similar (Gilbert and Li 2012). Early mapping
studies in adult neocortex suggested that the representations
of the trained digits in somatosensory cortex (Recanzone et al.
1992) or trained tones in auditory cortex (Recanzone et al.
1993) were expanded. However, several later studies of per-
ceptual and motor learning indicate that cortical map expan-
sion may not be persistent. Instead, cortical maps may expand
during learning, but then return to baseline levels after the task
has been learnt (Molina-Luna et al. 2008; Yotsumoto et al.
2008; Reed et al. 2011; Gilbert and Li 2012). The latter view
suggests that map expansion and contraction is a period of
intense cortical reorganization.

In rodent somatosensory cortex, plasticity mechanisms have
commonly been investigated after altering the sensory input
from a rodent’s snout, for example, by trimming a subset of its
whiskers. Neural firing in primary somatosensory cortex (SI)
that has lost its principal whisker sensory input (deprived
cortex) has been reported to be adjusted in at least 2 ways.
Recordings from microelectrodes inserted into SI have re-
vealed that stimulation of the remaining, intact whiskers
evokes more firing in the upper layers of deprived cortex
(Diamond et al. 1994; Glazewski and Fox 1996). However, mi-
croelectrodes typically capture the firing of only a few active
neurons. A distinct insight has emerged from studies that
follow populations of active and inactive neurons in SI with in
vivo calcium imaging (Margolis et al. 2012). After whisker trim-
ming, the firing of layer 2/3 (L2/3) pyramidal neurons in de-
prived cortex is redistributed. Specifically, neurons that
responded poorly to whisker stimulation in the naive rodent
fire more action potentials, whereas those that responded reli-
ably in the naive rodent fire less action potentials (Margolis
et al. 2012). This finding emphasizes the role of recruiting pre-
viously inactive, “silent” neurons (Shoham et al. 2006) into
local excitatory networks during cortical plasticity. The mech-
anism whereby cortical microcircuits recruit new neurons is
currently unknown.

Disinhibition is widely thought to play a role in reorganiza-
tion of the adult neocortex (Jacobs and Donoghue 1991; Jones
1993; Chen et al. 2011; Keck et al. 2011; van Versendaal et al.
2012) and may be involved in expanding excitatory networks.
This may occur through a finite period (days) of weakening of
inhibitory circuitry, which reveals latent excitatory connections
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(Jacobs and Donoghue 1991) or facilitates plasticity of excita-
tory circuitry (Chen et al. 2011; Keck et al. 2011; van Versen-
daal et al. 2012). Rapid structural changes to inhibitory circuits
occur in L2/3 of deprived cortex and are consistent with the
disinhibition hypothesis (Marik et al. 2010; Chen et al. 2011;
Keck et al. 2011; van Versendaal et al. 2012). However, there is
little direct, functional evidence for disinhibition in L2/3 of de-
prived cortex, where plasticity is greatest.

We investigated the mechanisms underlying adult cortical re-
organization by combining blood oxygen level-dependent
(BOLD) functional magnetic resonance imaging (fMRI) to
image whisker cortical maps with electrophysiological record-
ings from pairs of synaptically connected neurons. We show
that cortical map expansion is accompanied by a rapid increase
in the connectivity between L2/3 pyramidal neurons in the per-
iphery of the expanded map. Map retraction is associated with
the loss of entire local excitatory connections. The rewiring does
not affect local inhibitory circuits. We propose that the rewiring
reconfigures local excitatory circuits.

Materials and Methods

Whisker Trimming
All procedures were carried out in accordance with the UK Animals
(Scientific Procedures) Act 1986. For BOLD fMRI experiments, all
whiskers except for the C row whiskers bilaterally of adult Sprague-
Dawley rats (250–350 g) were cut daily to the level of the facial hair.
This trimming protocol generates multiple boundaries between spared
and deprived cortex in SI at the junction of: (1) The C and D barrel
columns (medially); (2) the C and B barrel columns (laterally); and (3)
the β and γ straddler whiskers caudally. Control rats were sham-
trimmed. All rats’ whiskers except for the C1–4 whiskers bilaterally
were cut immediately prior to scanning. For electrophysiology experi-
ments, we trimmed the lower 2 rows (D and E rows, γ and δ outliers) of
rats’ whiskers to reproduce the imaging-experiment boundary
between deprived and spared cortex at the junction of C and D barrel
columns. Trimming was performed daily from postnatal day 30 (P30)
for 2–4 days or 6–8 days.

MRI and fMRI Methods
Our imaging protocol has been previously described (Alonso et al.
2008). Male Sprague-Dawley rats were anesthetized with α-chloralose.
Imaging was performed in a horizontal bore 9.4 T magnet with a
25-mm diameter surface coil. The right C1–4 whiskers were moved
rostro-caudally at 5 Hz by a pneumatic system. An imaging session con-
sisted of 120 blocks with 60 blocks ON (whisker deflection throughout
block) and 60 blocks OFF (no whisker deflection). The volume of data
acquired in each block comprised 12 slices of 0.5 mm thickness. The
0.5-mm slice thickness approximates to the diameter of one barrel
column in SI (Riddle and Purves 1995). A multiecho gradient echo
(GE) imaging sequence was custom-written to improve the contrast to
noise of the BOLD signal. Imaging parameters were: flip angle, 31°;
time repetition (TR) = 340 ms; time echo (TE) = 4, 8, 12, 16, 20 ms; field
of view (FOV), 32 × 32 mm; matrix, 96 × 96. The acquisition time per
volume was 32.6 s and the total scan time per fMRI session was 1 h 5
min. The ON and OFF blocks were randomized to reduce colored
noise attributable to vascular pulsations accompanying the cardiac and
respiratory cycles with the conditions that: (1) The protocol always
begins with an OFF and (2) a maximum of 2 ONs occur in succession
(Alonso et al. 2008). Coronal anatomical scans were created from a
spin-echo sequence (TR/TE = 1000/20 ms), with 0.5 mm thick slices, a
FOV of 32 × 32 mm, a matrix size of 192 × 192, and 4 signals averaged.

fMRI Data Analysis
Multiecho GE data sets were converted into single-echo images (effect-
ive TE = 12 ms) by summing the magnitude images generated from

each echo. Images from each scan session were co-registered and
aligned in SPM99 (http://www.fil.ion.ucl.ac.uk/spm/). Any rat that ex-
hibited head motion exceeding 0.5 mm along x or y axes or >0.75 mm
in the z direction (along B0) was excluded from further analysis. We
minimized BOLD signal attributable to large draining veins and vascu-
lar inflow (Menon and Goodyear 2001) by constructing a coefficient of
variation map of the BOLD signal and eliminating voxels with coeffi-
cients of variation greater than 15% (Hlustik et al. 1998). We reduced
noise in our functional images by performing a probabilistic independ-
ent component analysis on 4D data sets using MELODIC 2.0 (http
://www.fmrib.ox.ac.uk/fsl/). Components that had a correlation coeffi-
cient with a P-value of >0.1 when compared with the stimulus para-
digm, that is, uncorrelated, were removed by linear regression to form
a denoised data set. Data were smoothed with a Gaussian kernel (full
width half maximum, 0.99 mm). A general linear model of the data
was constructed (Alonso et al. 2008). A BOLD response was deemed
present in single-animal statistical parametric maps if there was a
cluster of 4 or more contiguous voxels that were all statistically signifi-
cant (P < 0.05, uncorrected) in the region of interest (Alonso et al.
2008).

Brain Slice Preparation and Electrophysiological Recording
Brain slices were cut across the whisker barrel rows (Cheetham et al.
2007). We made whole-cell voltage recordings of synaptically con-
nected pairs of L2/3 pyramidal neurons in spared and control cortex at
36–37 °C. Recording pipettes (4–7 MΩ) for voltage recordings con-
tained (in mM): KMeSO4 130, NaCl 8, KH2PO4 2, D-Glucose 2, HEPES
10, MgATP 4, GTP 0.3, ADP K Salt 0.5, Alexa Fluor 488 (AF488) 1 or
Alexa Fluor 568 (AF568) 1 (Invitrogen, UK), and biocytin 3 mg/mL.
Miniature excitatory postsynaptic potentials (mEPSPs) and unitary
EPSPs (uEPSPs) were recorded and analyzed as described previously
(Cheetham et al. 2007). Probability of failure was calculated from
responses to the first action potential in the stimulus train. Neuronal
excitability was investigated by injecting 500 ms current pulses into the
soma to evoke action potential firing. Connectivity between control
neurons and uEPSP amplitude did not change between the P32–P34
and P36–38 groups and was pooled. uPSP responses (uEPSP or unitary
inhibitory postsynaptic potential (uIPSP)) were normalized to the first
response (uPSP1) in the train. The normalized steady-state amplitude
in the train was the average of the sixth to eighth responses (uEPSP6–8)
in the train after normalization.

Miniature inhibitory postsynaptic currents (mIPSCs) were recorded
from pyramidal neurons in voltage clamp, with the resting membrane
potential held at 0 mV. The internal solution contained (in mM):
Cesium methanesulfonate (CH3O3SCs) 130, NaCl 8, KH2PO4 2, Dex-
trose 2, HEPES 10, MgATP 4, GTP 0.3, ADP K Salt 0.5, QX-314 bromide
10, either Alexa Fluor (AF) 488 1 or AF 568 1 (Invitrogen, UK), and
biocytin 3 mg/mL. Pyramidal cells were excluded if Vm at break in was
>−68 mV, Rs > 35 MΩ, or Rm < 100 MΩ. uIPSPs were recording in
current clamp with the same internal solution that was used for pyram-
idal neurons. The resting membrane potential of the L2/3 pyramidal
neuron was held at −55 mV to increase the amplitude of the uIPSP.
Fast spiking (FS) interneurons were identified based on morphological
characteristics. Their identity was then confirmed electrophysiologi-
cally, by analyzing the firing response to 500 ms pulses of depolarizing
currents (0.4–1.0 nA). Interneurons were considered FS if they reached
firing frequencies >200 Hz in response to 1.0 nA current injection. FS
interneurons were excluded if they had bouton cartridges aligned
along the axis of the barrel column in fluorescence images, suggesting
that they were axo-axonic cells (Supplementary Fig. 1).

Confocal Imaging and Dendritic Spine Counts
Confocal laser-scanning microscopy and spine counts were performed
as described previously (Cheetham et al. 2007, 2008). Briefly, confocal
images were acquired with a Zeiss 510 META confocal microscope
with a C-Apochromat 63× water-immersion objective and imaged with
Imaris (Bitplane). Spine densities were measured by scrolling up and
down through a dendrite and counting all spines in a 10-μm section at
a measured path length from the soma.
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Statistics
Normally distributed data were described by their mean ± SEM and
were analyzed using t-tests or analysis of variance (ANOVA). Data that
failed normality and/or equal variance tests were expressed as median
[interquartile range]. Where possible, these data either underwent a
natural log transform to normalize their distributions and/or equalize
their variances prior to performing t-tests or ANOVA. The Mann–
Whitney rank sum test was used to compare medians. Distributions
were compared using the Kolmogorov–Smirnov test (Cheetham et al.
2007) (Matlab, Mathworks). The volumes of SI positive BOLD re-
sponses (PBRs) were analyzed with Poisson regression in R (R Project
for Statistical Computing, http://www.r-project.org/) using the quasi
family to enable modeling of overdispersion and the formula:

log½EðSI PBR volumeÞ� ¼ aþ bðpeak PBR amplitudeÞ
þ gð3-day trimÞ þ dð7-day trimÞ;

where E(SI PBR volume) is the expected value of the SI PBR volume,
“3-day trim” and “7-day trim” are dummy variables, and α, β, γ, and δ
are parameters (coefficients) of the model. Spine densities were ana-
lyzed with a general additive model using the “mgcv” and “gam”

packages in R and the formula:

Eðspine densityÞ ¼ aþ sðpath length from somaÞ þ bðDEPÞ;

where E(spine density) is the expected spine density, s(path length
from soma) is a smoothed function of the distance along the dendrite
of the spines from the soma, DEP is a dummy variable (1, deprived;
0, control), and α and β are parameters (coefficients) of the model.

Results

Expansion of Whisker Representations Imaged with fMRI
Early processing of touch sensory information in rodent neo-
cortex occurs in distinct maps that lie in SI and secondary som-
atosensory cortex (SII) with a third rudimentary map in the
parietal ventral area (Chapin and Lin 1984; Benison et al. 2007)
(Fig. 1A). Experience-dependent plasticity of whisker maps
was induced in adult somatosensory cortex by daily bilateral
trimming of all whiskers except for the C row (Fig. 1B). This
protocol facilitates detection of plasticity in SI because it
enables the representation of spared whiskers to expand in
multiple directions. We simulated normal whisking in the MRI
scanner by passively deflecting the right-sided C1–C4 whiskers
at 5 Hz and used the evoked BOLD signal as a read-out of re-
organization of whisker cortical maps (Fig. 1B). In control rats,
synchronous deflection of the C1–C4 whiskers evoked a PBR
in contralateral SI that extended over 2 imaging slices in the
group statistical map (Fig. 1C). In contrast, deflection of the
spared whiskers after trimming for either 3 days (Fig. 1D; Sup-
plementary Material and Fig. 2) or 7 days (Fig. 1E) elicited
PBRs in the grouped data that extended over 6 contiguous
slices in contralateral SI, SII, and the parietal ventral area. The
grouped data also showed negative BOLD responses in contra-
lateral somatosensory cortex after 3 days (Fig. 1D), but not
after 7 days of trimming (Fig. 1E).

The cortical representation of rats’ whiskers may show
marked variability in mapping studies (Riddle and Purves 1995;
Chen-Bee and Frostig 1996). This has a direct impact on how
best to quantify cortical reorganization with BOLD fMRI
(Woods 1996; Petersson et al. 1999a, 1999b; Thirion et al.
2007). Group maps derived from a fixed effects model show
small-amplitude changes in the BOLD signal. However, the
group maps do not allow for interanimal variability in the

location of the whisker map evident in single-animal data sets
(Supplementary Fig. 2) and tend to give greater weight to
animals with larger PBRs. Accordingly, we quantified the
changes in the PBR in SI using single-animal statistical maps

Figure 1. Spared whisker representations enlarge after whisker trimming. (A)
Schematic illustrating the relative position of SI, SII, and the parietal ventral area (PV) in
a coronal slice through whisker barrel cortex. Dashed line bisects SI and SII. Whisker
barrel columns are marked A–E. Red circle, SI PBR evoked by whisker deflection. (B)
Schematic of trimming protocol (open circle denotes trimmed whisker) and deflection
of right C1–4 whiskers. Left C1–4 whiskers not shown. (C and E) Group statistical
parametric maps of BOLD responses evoked by 5 Hz whisker deflection in
sham-trimmed rats (C, n=26 rats), and after whisker trimming for 3 days (D, n=15
rats) and 7 days (E, n= 28 rats). Pseudocolored voxels have a positive (red) or
negative (blue) BOLD signal that is significantly different from baseline. Pseudocolor
scale bar applies to (C and E). Numbers indicate rostro-caudal distance from bregma.
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(Fig. 2A) (Alonso et al. 2008). SI PBR volume increased marked-
ly after whisker trimming for 3 days (Fig. 2B,C) (median [inter-
quartile range]: 3-day trim, 45 [24–69] voxels, n = 15 rats;
controls, 20 [11–40] voxels, n = 26 rats; P < 0.001, Methods).
Spared SI whisker representations had shrunk back after 7 days
of whisker trimming (vs. 3-day trim volume, P = 0.008), but re-
mained larger than control representations (7-day trim, 26 [17–51]
voxels, n = 28 rats, P = 0.004; Fig. 2B,C). In contrast, the am-
plitude of the BOLD signal in contralateral SI after either 3 or
7 days of whisker trimming was similar to control values
(Fig. 2D) (control, +0.50 ± 0.04%, n = 26 rats; 3-day trim,
+0.43 ± 0.04%, n = 15 rats; 7-day trim, +0.53 ± 0.04%, n = 28
rats; P = 0.261, one-way ANOVA). We concluded that our
BOLD imaging showed rapid reorganization, mainly at the per-
iphery of spared whisker representations in SI.

Whisker map plasticity is greatest in the supragranular layers
of somatosensory cortex (Diamond et al. 1994). Therefore, we

determined whether the expansion of the PBR was uniform
throughout the SI neocortex by dividing it into upper and lower
halves (Alonso et al. 2008), which are congruent with layers 1–4
(L1–4) and layers 5–6, respectively. The volume of the PBR in
L1–4 increased after 3 days (P < 0.001) of whisker trimming
(Fig. 2E and Supplementary Material). The map retracted
between 3 and 7 days of whisker trimming (3- vs. 7-day,
P = 0.004), but had not shrunk back to control dimensions
(7-day vs. control, P = 0.004). The increase in volume of the L1–
4 PBR accounted for the majority of the expanded PBR (Fig. 2B,
E). Hence, our BOLD imaging is consistent with evolving re-
organization in upper cortical layers.

Changes in BOLD signal were not confined to SI whisker re-
presentations. A PBR was elicited in SII after 3 days (Fig. 2A) and
after 7 days of whisker trimming, but not in control animals (SII
PBR amplitude and volume: 3-day trim, +0.35% [0.24–0.43%],
19 [6–40] voxels, n = 15 rats; 7-day trim, +0.34% [0.00–0.46%],
8 [0–33] voxels, n = 28 rats; control, +0.00% [0.00–0.37%], 0 [0–18]
voxels, n = 26 rats). A multifocal negative BOLD response was
adjacent to the PBRs in somatosensory cortex (total negative
BOLD volume: 3-day trim 33 [15–51] voxels; 7-day trim 26 [0–38]
voxels; control 0 [0–29] voxels). We concluded that our imaging
data showed plasticity of multiple whisker cortical maps that
evolved over days.

Local Excitatory Circuits Rewire in the Periphery of the
Expanded Whisker Representation
We next investigated the cellular basis for the cortical reorgan-
ization. We made electrophysiological recordings in SI that had
been deprived of its principal whisker sensory input. Record-
ings were focused on L2/3 of deprived cortex adjacent to spared
cortex because this region lies in the periphery of the expanded
PBR where our functional imaging indicated that reorganization
was occurring. We prepared brain slices that cut across the
whisker barrel rows and made recordings from pairs of pyram-
idal neurons in L2/3 near the junction between the C and D
barrel columns (Cheetham et al. 2007, 2008) (Fig. 3A–C), where
spared representations had expanded into deprived cortex. In
control cortex, the chance of finding a connection between
neighboring L2/3 pyramidal neurons (Pyr→ Pyr) was low (21/
553 is 3.8%, 21/553 tested Pyr→ Pyr pairs). In contrast, there
was a dramatic increase (>3-fold) in Pyr→ Pyr connectivity in
deprived cortex after 2–4 days of whisker trimming (12.0%, 16/
133 connections tested, P < 0.001, χ2 test) (Fig. 3D). After trim-
ming for 6–8 days, connectivity in deprived cortex had returned
to control levels (4.0%, 8/201 connections tested, P = 0.988, χ2

test) (Fig. 3D). Hence, the reorganization of local excitatory
circuitry follows the same temporal pattern as the expansion
and retraction of the spared whisker representations imaged
with BOLD fMRI.

Local excitatory connections are not random, but form micro-
circuits (Yoshimura et al. 2005; Cheetham et al. 2008). Typically,
an excitatory connection between 2 pyramidal neurons in a
microcircuit is formed by multiple synapses (Cheetham et al.
2007). We reasoned that the formation of new local excitatory
connections in deprived cortex might lead to increased synapse
number in deprived cortex. We addressed this issue in 2 ways.
We counted dendritic spines on L2/3 pyramidal neurons to give
a structural measure of synapse number. Secondly, we recorded
mEPSPs to give a functional measure of total excitatory synaptic
drive onto pyramidal neurons. We found no change in either

Figure 2. SI whisker representation expands without an increase in BOLD signal
amplitude. (A) Single-animal statistical parametric map of the BOLD signal evoked by
5 Hz deflection of the right C1–4 whiskers after 3 days of whisker trimming. (B)
Cumulative fraction plot of SI PBR volume from single-animal maps for controls (black,
n= 26 rats), 3-day trim (red, n= 15 rats), and 7-day trim (blue, n= 28 rats). (C)
Median SI PBR volume and interquartile range (error bars) after 3 and 7 days of whisker
trimming (median SI PBR volume: controls, 20 [11–40] voxels, n=26 rats; 3-day trim,
45 [24–69] voxels; n=15 rats; 7-day trim, median volume, 26 [17–51] voxels,
n= 28 rats). (D) Peak amplitude of BOLD signal (error bars, SEM) after whisker
trimming (control, +0.50 ± 0.04%, n=26 rats; 3-day trim, +0.43 ± 0.04%, n= 15
rats; 7-day trim, +0.53 ± 0.04%, n=28 rats). (E) Cumulative fraction plot of the SI
PBR volume in L1–4. Color code for (C–E) as (B).
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spine density (Supplementary Fig. 3) or mEPSP amplitude and
frequency (Supplementary Material and Fig. 4). The relative sta-
bility of the total number of excitatory synapses indicates that
the formation of new local excitatory connections was offset by
loss of synaptic inputs from other pathways. This may be
mediated by synapse turnover, which is increased by whisker
deprivation (Trachtenberg et al. 2002).

It remained possible that new connections were formed by
single synapses and, hence, would have smaller uEPSP ampli-
tudes and higher failure rates than pre-existing connections.
However, we found that 2–4 days of whisker deprivation did
not alter uEPSP amplitudes (deprived, 0.38 ± 0.11 mV, n = 16;
control, 0.43 ± 0.11 mV, n = 21; P = 0.668, one-way ANOVA; Sup-
plementary Table 1) (Fig. 4A,B) or EPSP failure rates (probabil-
ity of failure—median [IQR]: control, 0.05 [0.02–0.79], n = 19
connections; 3-day trim, 0.23 [0.00–0.49], n = 16 connections;
P = 0.517, Kolmogorov–Smirnov test) (Fig. 4C). In mature
cortex, Pyr→ Pyr connections in L2/3 show a mixture of facilita-
tion and depression (Fig. 4D and Supplementary Fig. 5) (Chee-
tham et al. 2007). Comparison of the effects of whisker
deprivation on the short-term synaptic dynamics is facilitated by
normalization of the uEPSP amplitudes with respect to the first
response in the train (uEPSP1) (Finnerty et al. 1999). We found
that 2–4 days of whisker trimming did not affect the depression
of the normalized steady-state amplitude when the presynaptic
pyramidal neurons were stimulated to fire single action poten-
tials at 20 Hz (Fig. 4E) (2- to 4-day trim, 0.87 ± 0.07, n = 16 con-
nections; control, 0.88 ± 0.06, n = 21 connections; P = 0.163,
one-way ANOVA). Our data show that new local excitatory

Figure 4. New excitatory connections in deprived cortex have similar properties to
control connections. (A) Schematic of recordings from pairs of synaptically connected
L2/3 pyramidal neurons. (B) Mean uEPSP amplitudes in control cortex (black) and
deprived cortex after 2–4 days (red) or 6–8 days (blue) of whisker trimming (2- to 4-day
trim, 0.38± 0.11 mV, n=16; 6- to 8-day trim, 0.11± 0.03 mV, n=8; control,
0.43± 0.11 mV, n=21). Inset: presynaptic action potential, postsynaptic EPSP. (C)
Failure rates of neurotransmission between pyramidal neurons after 2–4 days (red) and
6–8 days (blue) of whisker trimming (median [IQR]: 2- to 4-day trim, 0.23 [0.00–0.49],
n=16; 6- to 8-day trim, 0.74 [0.56–0.85], n=8; control, 0.05 [0.02–0.79], n=19).
Inset: presynaptic action potential, no postsynaptic response. (D) uEPSP amplitudes
during a 20-Hz stimulus train in control cortex (filled circles) or deprived cortex after 2–4
days (red) and 6–8 days (blue) of whisker trimming. Error bars, SEM. Inset: 20 Hz train of
postsynaptic EPSPs. (E) Normalized uEPSP amplitudes of Pyr→ Pyr connections during a
20-Hz train in deprived cortex after 2–4 days trimming (red, n=16) and in control cortex
(black, n=21). Error bars, SEM. (F) Normalized uEPSP amplitudes of Pyr→ Pyr
connections during a 20-Hz train in deprived cortex after 6–8 days trimming (blue, n=8)
and in control cortex (black, n=21). Error bars, SEM. (G) Schematic shows sparse local
connectivity in control cortex prior to whisker trimming (left panel). Whisker trimming for
3 days induces a rapid 3-fold increase in local excitatory connectivity (middle panel; new
connections, red). Connectivity returns to control levels following 7 days of whisker
trimming (right panel; 7-day trim connections, blue).

Figure 3. Local excitatory connectivity changes in concert with BOLD whisker
representations. (A) Schematic showing orientation of a brain slice with respect to
BOLD fMRI images. Electrophysiological recordings were made in L2/3. Dashed line
indicates the boundary between spared C-row whiskers and deprived cortex. (B)
Synaptically connected pyramidal neurons. Upper trace, train of action potentials in
presynaptic neuron. Lower trace, evoked response in postsynaptic neuron. Scale bars:
50 mV (upper), 0.1 mV (lower); 50 ms. (C) Confocal reconstruction of the presynaptic
(green) and postsynaptic (orange) pyramidal neurons. Scale bar, 50 μm. (D)
Connectivity between deprived L2/3 pyramidal neurons in controls (black, 3.6%), after
whisker trimming for 2–4 days (red, 12.0%) and after whisker trimming for 6–8 days
(blue, 4.0%).
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connections with similar properties to control connections were
formed within a few days in deprived cortex.

In contrast, after 6–8 days of whisker trimming, uEPSP amp-
litude was reduced (deprived, 0.11 ± 0.03 mV, n = 8, P = 0.009,
one-way ANOVA) (Fig. 4B) and failure rates of neurotransmis-
sion were greater (probability of failure, 0.74 [0.56–0.85], n = 8
connections; P = 0.012, Kolmogorov–Smirnov test) (Fig. 4C).
Unsurprisingly, a 20-Hz train evoked a smaller steady-state
response (steady-state uEPSP amplitude, 6–8 day deprived,
0.08 ± 0.03 mV, n = 8; P = 0.001, one-way ANOVA) (Fig. 4D).
Although the 6- to 8-day L2/3 connections in deprived cortex
tended to show greater depression (Fig. 4F), their normalized
steady-state was not statistically different from controls (6- to
8-day trim, 0.67 ± 0.08, n = 8 connections; control, 0.88 ± 0.06,
n = 21 connections; P = 0.163, one-way ANOVA). The passive
membrane properties (Supplementary Table 2) and excitability
(Supplementary Fig. 6) of L2/3 pyramidal neurons in deprived
cortex did not change over the experimental period. Taken to-
gether, our data show that whisker deprivation induces bidir-
ectional changes in local excitatory connectivity in deprived
cortex: Rapid formation of new local excitatory connections
with similar properties to control connections is followed by
weakening and loss of local excitatory connections (Fig. 4G).
Local excitatory connections between L2/3 pyramidal neurons
are typically formed by multiple synapses (Cheetham et al.
2014). The findings of reduced uEPSP amplitude and increased
failure rate combined with the synaptic dynamics after 6–8 days
of trimming suggest that there is loss of weaker synapses at
the remaining L2/3 Pyr→ Pyr connections in deprived cortex.
Hence, our data suggest that the changes in local excitatory cir-
cuitry do not solely affect a subset of L2/3 Pyr→ Pyr connections.

Inhibitory Circuitry
It is widely thought that cortical reorganization involves changes
not only in excitatory circuitry, but also in inhibitory circuitry
(Jacobs and Donoghue 1991; Jones 1993; Froemke et al. 2007;
Chen et al. 2011; Vogels et al. 2011; van Versendaal et al. 2012).
One hypothesis is that disinhibition unmasks latent intracortical
connections (Jacobs and Donoghue 1991). Therefore, we ex-
plored whether there were functional changes in inhibition in
L2/3 of deprived cortex where we had found evidence of rewir-
ing of local excitatory circuits. We first investigated whether
there was a global reduction in inhibitory drive onto excitatory
neurons by measuring the frequency and amplitude of mIPSCs
in L2/3 pyramidal neurons. The mean mIPSC amplitude was not
affected by deprivation (deprived, 28.1 ± 1.4 pA, n = 16 neurons;
control, 26.3 ± 1.1 pA, n = 15 neurons; P = 0.33, t-test) (Fig. 5A,
B). However, the frequency of mIPSCs was increased in de-
prived cortex (deprived, 4.3 [3.6–5.9] Hz, n = 16 neurons;
control, 2.7 [2.4–4.5] Hz, n = 15 neurons; P = 0.023, Mann–
Whitney rank sum test) (Fig. 5C). Hence, our data do not show a
reduction in global inhibitory drive onto L2/3 pyramidal
neurons in deprived cortex after 2–3 days of whisker trimming.

Although global inhibitory drive was not reduced, it re-
mained possible that whisker deprivation induced disinhibition
of a subset of inhibitory circuits. It has been proposed that in-
hibition undergoes plastic changes to maintain the balance
between excitation and inhibition in reorganizing sensory
cortex (Froemke et al. 2007; Marik et al. 2010; House et al. 2011;
Vogels et al. 2011). Increasing local excitatory connectivity
boosts positive feedback in cortical microcircuits and amplifies

signals (Douglas et al. 1995). Recurrent excitatory circuits are
usually counterbalanced by feedback inhibition to maintain
network stability (Shu et al. 2003). Therefore, we reasoned that
increased local excitatory connectivity may be matched by paral-
lel changes in inhibition to maintain the excitatory–inhibitory
balance. We recorded from FS interneurons (Fig. 6A; Methods)
because they have been implicated in adult cortical plasticity
(Pizzorusso et al. 2002; Ruediger et al. 2011; Campanac et al.
2013). It has been proposed that the excitatory–inhibitory
balance can be maintained in the hippocampus by increased ex-
citability of FS interneurons (Campanac et al. 2013). An increase
in excitability would tend to boost inhibition, whereas de-
creased excitability would lead to disinhibition. Whisker depriv-
ation alters the excitability of FS interneurons in L4 of deprived
cortex during development (Sun 2009). Therefore, we tested
whether whisker trimming for a few days altered the excitability
of FS interneurons in L2/3 of deprived cortex. We found that
there was no change in the slope of the input–output curve
(deprived, 182 ± 9 AP nA−1, n = 26 FS interneurons; control,
186 ± 10 action potential (PA) nA−1, n = 32 FS interneurons; t =
0.291, P = 0.77, t-test), rheobase (deprived, 0.11 ± 0.04 nA,
n = 26 FS interneurons; control, 0.19 ± 0.03 nA, n = 32 FS inter-
neurons; t = 1.556, P = 0.125, t-test), or passive membrane prop-
erties of L2/3 FS interneurons (Fig. 6B and Supplementary
Table 3). We concluded that the excitability of L2/3 FS interneur-
ons was not affected by a few days of whisker deprivation.

We next made electrophysiological recordings from synap-
tically connected pairs of neurons comprising an L2/3 FS inter-
neuron and an L2/3 pyramidal neuron to investigate whether
whisker deprivation altered local inhibitory circuits. We first
considered the excitation of FS interneurons. Our recordings
had shown a marked increase in Pyr→ Pyr connectivity in
L2/3 of deprived cortex after 3 days of whisker deprivation. In
contrast, we found that Pyr→ FS connectivity in deprived
cortex was unchanged (Pyr→ FS connectivity: 3-day deprived,
62%, 26/42 pairs tested; control, 62%, 26/42 pairs tested;
P = 1.00, χ2 test) (Fig. 6C,D). We concluded that the elevated
Pyr→ Pyr connectivity following 3 days of whisker deprivation

Figure 5. Inhibitory drive onto L2/3 pyramidal cells is not decreased by 3-day whisker
deprivation. (A) Example trace of mIPSCs (filled arrow heads) in an L2/3 pyramidal
neuron. Scale bar: 10 pA, 20 ms. (B) Cumulative fraction of mean mIPSC amplitude
recorded from L2/3 pyramidal neurons in deprived (red) and control (black) cortex (grand
mean rather than mIPSC amplitudes: deprived, 28.1± 1.4 pA, n=16 neurons; control,
26.3± 1.1 pA, n=15 neurons). (C) mIPSC frequency recorded from L2/3 pyramidal
neurons in deprived (red) and control (black) cortex (mean of mean mIPSC frequencies:
deprived, 4.3 [3.6–5.9] Hz, n=16 neurons; control, 2.7 [2.4–4.5] Hz, n=15 neurons).

6 Bidirectional Reorganization of Cortical Microcircuits • Albieri et al.

 at Im
perial C

ollege L
ondon on June 3, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu098/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu098/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu098/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu098/-/DC1
http://cercor.oxfordjournals.org/


was not part of a generalized, nonspecific increase in local
excitatory connectivity.

Although Pyr→ FS connectivity had not changed, it remained
possible that existing Pyr→ FS connections were modified fol-
lowing whisker trimming. Therefore, we compared the ampli-
tudes of the first uEPSP (uEPSP1) in an L2/3 FS interneuron
evoked by a train of action potentials in a presynaptic L2/3 pyr-
amidal neuron (Fig. 6C). We found that 3 days of whisker trim-
ming did not alter the amplitude of the uEPSP1 in L2/3 FS
interneurons in deprived cortex (deprived, 1.34 [0.93–2.76] mV,
n = 25 Pyr→ FS connections; control, 1.24 [0.88–2.00] mV;
n = 19 Pyr→ FS connections; P = 0.51, Mann–Whitney rank sum
test) (Fig. 6E). Similarly, the synaptic dynamics of Pyr→ FS

connections during a 20-Hz train were unchanged (Fig. 6F and
Supplementary Fig. 7A) (normalized steady-state amplitude: de-
prived: 0.74 ± 0.04; n = 25; control: 0.76 ± 0.05, n = 19; P = 0.70,
t-test). Hence, our data suggested that 3 days of whisker depriv-
ation was not accompanied by increased excitation of L2/3 FS
interneurons by neighboring pyramidal neurons.

We next considered inhibition of pyramidal neurons by FS
interneurons (FS→ Pyr) since strengthening of inhibitory synap-
ses has been predicted to play a role in maintaining the excita-
tory–inhibitory balance during cortical reorganization (Vogels
et al. 2011). uIPSPs were measured by holding the L2/3 pyram-
idal neuron at −55 mV in current clamp mode while stimulating
the presynaptic FS interneuron to fire a train of action potentials
(Fig. 7A). The probability of finding an FS→ Pyr connection
was similar in control and in deprived cortex (deprived: 64%,
16/25 connections tested; control, 62%, 17/28 connections
tested; P = 0.97, χ2 test) (Fig. 7B). The mean uIPSP amplitude in
deprived L2/3 pyramidal neurons after a 3-day deprivation was
not different from controls (deprived: −0.24 [−0.35 to −0.18]
mV; n = 16 connections; control, −0.27 [−0.69 to −0.20] mV;
n = 19 connections; P = 0.13, t-test after log transformation of the
absolute uIPSP amplitude) (Fig. 7C). The synaptic dynamics
during a 10-Hz train showed minimal and variable depression of
uIPSPs during the train (Supplementary Fig. 7B,C). uIPSPs
evoked by 20 Hz trains showed greater synaptic depression than
the responses elicited by 10 Hz stimulation (Fig. 7D and Supple-
mentary Fig. 7). However, 3-day whisker deprivation did not
affect the short-term synaptic dynamics of uIPSPs evoked by
20 Hz trains (Fig. 7E) (normalized steady-state amplitude: de-
prived, 0.57 ± 0.05, n = 8 FS→ Pyr connections; control,
0.56 ± 0.05, n = 13 FS→ Pyr connections; P = 0.842, t-test).
Whisker deprivation for 3 days did not change the reversal po-
tential for uIPSPs (Supplementary Material). Taken together, our
findings suggest that 3 days of whisker deprivation did not alter
the strength of inhibition from L2/3 FS interneurons onto L2/3
pyramidal neurons as a whole.

Our analysis up till this point has studied feedback inhib-
ition at a population level. It remains possible that inhibition
from a subset of FS interneurons was modified. In principle, in-
hibitory plasticity mechanisms in mature cortex could regulate
feedback inhibition at the level of each disynaptic circuit (Kull-
mann et al. 2012). In simple, disynaptic negative-feedback cir-
cuits, the strength of excitation of the FS interneuron by the
pyramidal cell (Pyr→ FS), and the strength of inhibition of the
pyramidal cell by the FS interneuron (FS→ Pyr) may move in
parallel when feedback inhibition either increases or decreases.
Altered inhibition could then manifest as a perturbation of this
relationship. We investigated this idea in the subset of FS inter-
neuron–pyramidal cell pairs that were reciprocally connected.
We found that the amplitude of the mean uEPSP1 was not corre-
lated with the mean uIPSP1 amplitude in either control or de-
prived cortex (control, r =−0.06, n = 17 reciprocally connected
FS→ Pyr pairs, P = 0.796, Pearson correlation; deprived, r =
−0.40, n = 14 reciprocally connected FS→ Pyr pairs; P = 0.159,
Pearson Correlation) (Fig. 7F). We concluded that the strength
of feedback inhibition was not regulated at the level of single re-
current feedback circuits in mature cortex.

Discussion

We investigated how mature sensory cortex reorganizes over
the first few days after its principal sensory input is lost. Our

Figure 6. Excitatory transmission onto L2/3 FS interneurons in deprived cortex is not
affected by brief sensory deprivation. (A) Montage of maximum intensity projections from
confocal z-stacks of an L2/3 FS interneuron filled with AF568 (orange). Scale bar, 40 μm.
(B) Mean number of action potentials recorded in L2/3 FS interneurons evoked by 500 ms
depolarizing current pulses in control (black) and deprived (red) cortex after 2–3 days of
sensory deprivation. Inset: example trace of action potentials in an L2/3 FS interneuron
evoked by a +0.4-nA current pulse (500 ms). Slope of the input–output curve: deprived,
182± 9 action potential nA−1, n=26 FS interneurons; control, 186± 10 AP nA−1,
n=32 FS interneurons. Rheobase: deprived, 0.11± 0.04 nA, n=26 FS interneurons;
control, 0.19± 0.03 nA, n=32 FS interneurons. (C) Pyr→ FS connection: 20 Hz train
of action potentials in the presynaptic pyramidal neuron evokes short latency uEPSPs
(average 50 trials) in the postsynaptic FS interneuron. Scale bars: 20 mV (top), 0.5 mV
(bottom), 50 ms. (D) Percentage of pyramidal cell to FS interneuron pairs (Pyr→ FS) that
were synaptically connected in control (black, 62%) and deprived (red, 62%) cortex. (E)
Empirical distribution plots of mean uEPSP1 amplitudes in deprived (red) and control
(black) cortex. Median [IQR] of mean uEPSP1 amplitudes for Pyr→ FS connections:
deprived, 1.34 [0.93–2.76] mV, n=25; control, 1.24 [0.88–2.00] mV; n=19. (F) Mean
uEPSP amplitude during 20 Hz trains in deprived (red, n=25 Pyr→ FS connections) and
control (black, n=19 Pyr→ FS connections) cortex. Error bars, SEM.
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findings show that local excitatory circuits undergo bidirec-
tional rewiring in somatosensory cortex that has been deprived
of its principal whisker input. Here, we use rewiring to mean
the formation of entirely new connections or loss of estab-
lished connections rather than the formation and loss of synap-
ses, which can occur at existing connections. Specifically, we
found a rapid 3-fold increase in connectivity between L2/3 pyr-
amidal neurons in deprived cortex. This increased connectivity
was followed within days by a loss of excitatory connections,
which returned local excitatory connectivity in L2/3 to baseline
levels. This rewiring does not represent a nonspecific increase
in connectivity as inhibitory circuits involving FS interneurons

were not affected. The location and temporal profile of the
changes in local excitatory connectivity were consistent with our
BOLD fMRI findings. Our findings suggest that the rewiring re-
configures local excitatory circuits in deprived cortex (Fig. 4G).

Experience-Dependent Rewiring of Local Excitatory
Circuits
Altered sensory experience increases synapse formation and
elimination in cortical circuits (Holtmaat and Svoboda 2009;
Barnes and Finnerty 2010). However, the effects of synapse for-
mation and elimination on the wiring diagram for cortical cir-
cuits remain unclear. This arises because the identities of both
the presynaptic and the postsynaptic neuron are not usually
known. For instance, longitudinal imaging in vivo has revealed
that altered sensory experience and learning promotes rewiring
through increased turnover of dendritic spines on pyramidal
neurons in adult neocortex (Holtmaat and Svoboda 2009).
However, the presynaptic neurons that synapse with the new
spines are not usually identified. Hence, it is not clear whether
new synapses are formed between neurons with an existing syn-
aptic connection or whether the new synapse wires up neurons
that were previously unconnected. The formation of excitatory
connections between previously unconnected neurons has
been inferred from axonal growth into new brain regions
(Darian-Smith and Gilbert 1994; Jones 2000; Marik et al. 2010)
and loss of connections has been deduced from retrenchment of
axonal arbors (Antonini et al. 1998; Wimmer et al. 2010; Ober-
laender et al. 2012). Again, however, the postsynaptic partners
of the restructured axon are not usually known. Our electro-
physiological recordings between identified neurons show that
new excitatory connections are formed between pyramidal
neurons that were previously unconnected. Formation of entire-
ly new connections between pyramidal neurons exceeds loss of
existing connections in the first few days of whisker deprivation
with the result that connectivity increases local excitatory cir-
cuits in deprived cortex.

Local excitatory circuits can form new excitatory connec-
tions rapidly because of the geometry of the axons and den-
drites of L2/3 neurons. In a barrel column, the axon of an L2/3
pyramidal neuron lies very close to the dendrites of a neigh-
boring pyramidal neuron at multiple points (Cheetham et al.
2008). The proximity of axons and dendrites enables new
synapses to be formed by outgrowth of a dendritic spine to
contact a nearby axon (Knott et al. 2006). Accordingly, exten-
sive growth of axons is not required. The formation of entirely
new connections between L2/3 pyramidal neurons is facilitated
by the increase in turnover of dendritic spines induced by
whisker trimming (Trachtenberg et al. 2002). New synapses
require approximately 1 day before they are functional (Nagerl
et al. 2007). Hence, new multisynaptic connections between
L2/3 pyramidal neurons can be formed within a few days as
our recordings found.

It has been proposed that cortical maps expand through un-
masking of latent intracortical connections. However, silent
synapses are rare in mature neocortex (Barnes and Finnerty
2010) and we found no evidence of disinhibition. Therefore,
our results suggest that unmasking of latent intracortical con-
nections contributes little to the reorganization of L2/3
deprived cortex.

Long-lasting expansion of cortical maps has been attributed
to invasion of deprived cortex by axons of L2/3 pyramidal

Figure 7. Inhibitory transmission onto pyramidal neurons in L2/3 of deprived cortex is
unaltered by short periods of whisker deprivation. (A) Schematic showing an FS
interneuron synaptically connected to a pyramidal cell (top); train of 8 action potentials
in the presynaptic FS interneuron generates 8 short latency uIPSPs in the postsynaptic
pyramidal neuron (average of 50 trials). Scale bars (top to bottom): 20 mV, 0.1 mV,
100 ms. (B) Percentage of tested FS interneuron to pyramidal cell pairs (FS→ Pyr) that
were synaptically connected in control (black, 62%) and deprived (red, 64%) cortex. (C)
Empirical distribution plots of the amplitudes of mean uIPSP1 (absolute value) in
deprived (red) and control (black) cortex. Median [IQR] of mean uIPSP1 amplitudes:
deprived: −0.24 [−0.35 to −0.18] mV, n= 16 FS→ Pyr connections; control, −0.27
[−0.69 to −0.20] mV, n= 19 FS→ Pyr connections. (D) Mean uIPSP amplitude during
20 Hz trains in deprived (red, n=8 FS→ Pyr connections) and control (black, n= 13
FS→ Pyr connections) cortex. Error bars, SEM. (E) uIPSP amplitudes during a 20-Hz
train normalized to uIPSP1 for each L2/3 FS→ Pyr connection in 3-day deprived cortex
(red, n= 8) and in control cortex (black, n=13). Error bars are within the majority of
circles. (F) Relationship between mean uEPSP1 amplitude and mean uIPSP1 amplitude
(absolute values) for pairs of reciprocally connected FS interneurons and pyramidal
cells in control (black) and deprived (red) cortex (correlation: deprived, r=−0.40,
n= 14 reciprocally connected FS→ Pyr pairs; control, r=−0.06, n=17 reciprocally
connected FS→ Pyr pairs).
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neurons in spared cortex (Darian-Smith and Gilbert 1994;
Jones 2000). Yet, longitudinal imaging indicates that this takes
weeks (Marik et al. 2010). Therefore, invasion of deprived
cortex by axons from spared cortex may drive the loss of local
excitatory connections in deprived cortex, which continues for
many weeks after our study period (Cheetham et al. 2007).
However, the temporal progression of the axonal growth sug-
gests that it is not primarily responsible for the rapid expansion
of BOLD whisker maps after 3 days of trimming.

Cortical Reorganization Imaged with BOLD fMRI
The spatial extent of the expanded BOLD whisker representa-
tions that we describe is of the order of one to a few barrel
columns and is in broad agreement with other fine-scale
studies of whisker map reorganization in mature animals
(Diamond et al. 1994; Glazewski and Fox 1996; Polley et al.
1999). Our BOLD fMRI data did not show a monotonic expan-
sion of the spared whisker representations, but instead
revealed a rapid expansion followed by a retraction of the
BOLD whisker representation. Our results are similar to the
findings from studies of perceptual learning, which show map
expansion during learning followed by map retraction after the
task is learnt (Molina-Luna et al. 2008; Yotsumoto et al. 2008;
Reed et al. 2011; Gilbert and Li 2012).

The effect of altered sensory experience on the thalamocor-
tical input to whisker barrel cortex has been studied with
several techniques including BOLD fMRI. The results vary with
the experimental protocol and whether spared or deprived
cortex is studied. A lesion study has reported that the BOLD
signal in spared SI is enhanced 2 weeks after the lesion, and
that this is associated with strengthening of the thalamocortical
input to L4 whisker barrels (Yu et al. 2012). The potentiated
thalamic input was attributed to an increased number and
greater strength of thalamocortical synapses (Yu et al. 2012).
In contrast, we found that nontraumatic whisker trimming did
not affect the amplitude of the BOLD signal, although the
BOLD representation of spared whiskers was expanded. Fur-
thermore, anatomical studies show loss of thalamocortical
axon branches in deprived L4 barrels after 3 days of whisker
trimming (Wimmer et al. 2010; Oberlaender et al. 2012).
Bouton density is unchanged (Wimmer et al. 2010; Oberlaen-
der et al. 2012), suggesting that the number of thalamocortical
synapses in deprived whisker barrels is decreased. Hence, the
expanded BOLD whisker representation that we report is not
attributable to increased numbers of strengthened thalamocor-
tical inputs to L4 deprived cortex.

Inhibition and Cortical Plasticity
It has been hypothesized that inhibition may play a role in
adult cortical reorganization through a sustained period of dis-
inhibition (Jacobs and Donoghue 1991; Chen et al. 2011; Keck
et al. 2011; van Versendaal et al. 2012). However, we found no
evidence for global disinhibition in deprived cortex after 3
days of whisker trimming. Instead, we found an increase in the
frequency of mIPSCs and no change in mIPSC amplitude in
L2/3 pyramidal neurons in deprived cortex. Our mIPSC data
indicated that the number of inhibitory synapses onto L2/3
pyramidal neurons was increased or that the number of neuro-
transmitter release sites at inhibitory synapses was greater. We
investigated whether a subset of interneurons may be affected
by sensory experience, focusing on FS interneurons because
they have been implicated in adult cortical reorganization

(Pizzorusso et al. 2002; Ruediger et al. 2011; Campanac et al.
2013). However, feedback inhibition involving FS interneur-
ons was normal. Our results were surprising since the rapid
structural changes to inhibitory circuits in deprived cortex
reported in other studies would appear to indicate disinhib-
ition with loss of inhibitory boutons (Marik et al. 2010; Keck
et al. 2011), remodeling of the axonal arbors, and retraction of
the dendritic tips of L2/3 interneurons (Marik et al. 2010; Chen
et al. 2011). Collectively, the structural plasticity of L2/3 inter-
neurons and our data suggest that there is a redistribution of
inhibitory synapses across the dendritic tree of L2/3 pyramidal
neurons in deprived cortex rather than an absolute loss of
inhibitory input. The increase in mIPSC frequency could arise
if the formation of new inhibitory synapses exceeded the
elimination of existing inhibitory synapses. Finally, the redistri-
bution of inhibitory synapses may be coordinated with the re-
organization of local excitatory circuits (Chen et al. 2012).

Our findings cannot exclude a role for disinhibition in de-
prived cortex during cortical reorganization. We focused on
global inhibitory drive in L2/3 pyramidal neurons (mIPSC data)
and plasticity within local inhibitory circuits involving FS inter-
neurons. It remains possible that another group of interneurons
that we did not record from, for example, somatostatin-positive
interneurons, are selectively disinhibited during cortical map
plasticity. An alternative hypothesis is that disinhibition is transi-
ent to enable strengthening or remodeling of excitatory circuitry
(Froemke et al. 2007; Letzkus et al. 2011; Vogels et al. 2011).
Strengthening of excitatory synapses is followed within hours
by strengthening of inhibitory circuitry to maintain the balance
between excitation and inhibition in auditory cortex (Froemke
et al. 2007; Vogels et al. 2011). The effect of increasing recurrent
excitation in L2/3 on the excitatory–inhibitory balance in de-
prived cortex is uncertain. Our data suggest that excitation and
inhibition are not balanced at the level of disynaptic, feedback
inhibitory circuits. Recurrent excitation is a form of positive
feedback circuit (Douglas et al. 1995) and would, therefore,
tend to increase firing of pyramidal neurons. However, this
effect may be offset by the reduction in neural activity in de-
prived cortex following the loss of its principal sensory input.
Therefore, information processing may not require adjustments
to inhibitory circuitry.

Rewiring Mature Cortical Microcircuits
Why do local excitatory circuits rewire in L2/3 of deprived
cortex? In mature animals, the rewiring modifies established
local excitatory circuits. Pyramidal neurons in these circuits are
not connected randomly with neighboring pyramidal neurons
(Song et al. 2005; Yoshimura et al. 2005; Cheetham et al.
2007), and the probability of finding a connection between
neighboring L2/3 pyramidal neurons in SI is relatively low
despite the proximity of the axon and dendrites of neighboring
L2/3 pyramidal neurons (Cheetham et al. 2008). These features
suggest that the configuration of the wiring in mature local
excitatory circuits is important for the function of those
circuits.

In vivo calcium imaging of L2/3 pyramidal neurons during
whisker deprivation indicates that previously inactive, “silent”
neurons are recruited into local excitatory networks during
cortical plasticity (Margolis et al. 2012). If a pyramidal neuron
was already part of a network, then adjusting the strength of ex-
isting connections in the network could boost the firing of that
neuron. However, this strategy may not be an effective way to
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recruit “silent” neurons to a cortical microcircuit when excitatory
connectivity is low, as occurs in L2/3 of somatosensory cortex
(Cheetham et al. 2008). The increase in local excitatory connect-
ivity that we describe offers a mechanism whereby silent
neurons can be recruited into cortical microcircuits. The subse-
quent loss of excitatory connections enables those local excita-
tory circuits to be refined (Fig. 4G). We propose that the
reconfiguration of local excitatory circuits facilitates the redistri-
bution of neural firing during cortical plasticity.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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