28,170 research outputs found

    Metallicity of high stellar mass galaxies with signs of merger events

    Get PDF
    We focus on an analysis of galaxies of high stellar mass and low metallicity. We cross-correlated the Millenium Galaxy Catalogue (MGC) and the Sloan Digital Sky Survey (SDSS) galaxy catalogue to provide a sample of MGC objects with high resolution imaging and both spectroscopic and photometric information available in the SDSS database. For each galaxy in our sample, we conducted a systematic morphological analysis by visual inspection of MGC images using their luminosity contours. The galaxies are classified as either disturbed or undisturbed objects. We divide the sample into three metallicity regions, within wich we compare the properties of disturbed and undisturbed objects. We find that the fraction of galaxies that are strongly disturbed, indicative of being merger remnants, is higher when lower metallicity objects are considered. The three bins analysed consist of approximatively 15%, 20%, and 50% disturbed galaxies (for high, medium, and low metallicity, respectively). Moreover, the ratio of the disturbed to undisturbed relative distributions of the population age indicator, Dn(4000), in the low metallicity bin, indicates that the disturbed objects have substantially younger stellar populations than their undisturbed counterparts. In addition, we find that an analysis of colour distributions provides similar results, showing that low metallicity galaxies with a disturbed morphology are bluer than those that are undisturbed. The bluer colours and younger populations of the low metallicity, morphologically disturbed objects suggest that they have experienced a recent merger with an associated enhanced star formation rate. [abridged]Comment: Astronomy & Astrophysics, in pres

    On the Potential of Leptonic Minimal Flavour Violation

    Full text link
    Minimal Flavour Violation can be realized in several ways in the lepton sector due to the possibility of Majorana neutrino mass terms. We derive the scalar potential for the fields whose background values are the Yukawa couplings, for the simplest See-Saw model with just two right-handed neutrinos, and explore its minima. The Majorana character plays a distinctive role: the minimum of the potential allows for large mixing angles -in contrast to the simplest quark case- and predicts a maximal Majorana phase. This points in turn to a strong correlation between neutrino mass hierarchy and mixing pattern.Comment: 6 pages; version published on Physics Letters

    Hyper-chaotic magnetisation dynamics of two interacting dipoles

    Get PDF
    The present work is a numerical study of the deterministic spin dynamics of two interacting anisotropic magnetic particles in the presence of a time-dependent external magnetic field using the Landau–Lifshitz equation. Particles are coupled through the dipole–dipole interaction. The applied magnetic field is made of a constant longitudinal amplitude component and a time-dependent transversal amplitude component. Dynamical states obtained are represented by their Lyapunov exponents and bifurcation diagrams. The dependence on the largest and the second largest Lyapunov exponents, as a function of the magnitude and frequency of the applied magnetic field, and the relative distance between particles, is studied. The system presents multiple transitions between regular and chaotic behaviour depending on the control parameters. In particular, the system presents consistent hyper-chaotic states

    A photometric study of the hot exoplanet WASP-19b

    Full text link
    Context: When the planet transits its host star, it is possible to measure the planetary radius and (with radial velocity data) the planet mass. For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 micron. We have performed a global MCMC analysis of all new data together with some archive data in order to refine the planetary parameters and measure the occultation depths in z'-band and at 1.19 micron. Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352 (+/-116) ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711 (+/-745) ppm. Conclusions: We have shown that the detection of occultations in the visible is within reach even for 1m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table

    Decoherence in a quantum harmonic oscillator monitored by a Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.Comment: 4 pages, 3 figures, lette

    Cooler and bigger than thought? Planetary host stellar parameters from the InfraRed Flux Method

    Full text link
    Effective temperatures and radii for 92 planet-hosting stars as determined from the InfraRed Flux Method (IRFM) are presented and compared with those given by other authors using different approaches. The IRFM temperatures we have derived are systematically lower than those determined from the spectroscopic condition of excitation equilibrium, the mean difference being as large as 110 K. They are, however, consistent with previous IRFM studies and with the colors derived from Kurucz and MARCS model atmospheres. Comparison with direct measurements of stellar diameters for 7 dwarf stars, which approximately cover the range of temperatures of the planet-hosting stars, suggest that the IRFM radii and temperatures are reliable in an absolute scale. A better understanding of the fundamental properties of the stars with planets will be achieved once this discrepancy between the IRFM and the spectroscopic temperature scales is resolved.Comment: 15 pages, 4 figures. Accepted for publication in Ap

    Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    Get PDF
    Pattern formation often occurs in spatially extended physical, biological and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular revealing for the Swift-Hohenberg equations a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of an weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.Comment: 9 pages, 10 figures, submitted to Chao

    Importance Sampling: Intrinsic Dimension and Computational Cost

    Get PDF
    The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.Comment: Statistical Scienc
    • …
    corecore