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Pattern formation often occurs in spatially extended physical, biological, and chemical systems due

to an instability of the homogeneous steady state. The type of the instability usually prescribes the

resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting

from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of

the patterns associated with the considered instabilities. To address this issue, we design two simple

models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg

equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic

wave lengths. The patterns arising in these systems range from coexisting static patterns of differ-

ent wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter

phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a

co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of

stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is

investigated by performing accurate numerical simulations. These reveal more complex patterns,

ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos,

and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-

Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and

to lead to the emergence of purely periodic patterns. The final states are characterized by domains

with a characteristic length, which diverges logarithmically with the coupling amplitude. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905017]

Some chemical and biological systems exhibit competing

pattern forming instabilities with different characteristic

wave numbers. Often such a phenomenon is caused by

the presence of different physical processes that appear

on different length scales and cause patterns with differ-

ent wavelengths. Here, we investigate two coupled Swift-

Hohenberg (SH) equations as well as two coupled Cahn-

Hilliard (CH) equations as minimal models for such mul-

tiscale pattern formation. The CH and the SH equations

are partial differential equations describing the evolution

of a conserved and a non-conserved order parameter,

respectively. While the spatial domains in the SH equa-

tion self-organize into stationary periodic structures, for

the CH equation the domains exhibit a coarsening dy-

namics that finally yield a single large domain. The com-

petition between two instabilities with different

wavelengths k1 and k2 is analyzed for coupled SH equa-

tions as well as for coupled CH equations. In both cases,

the coupling of equations with stationary instabilities

(Turing or phase separation) can lead to wave dynamics.

Moreover, coupled SH equations exhibit a region of coex-

istence of Turing and traveling patterns as well as more

complex patterns. The coupling of two CH equations

leads to the arrest of coarsening and to the emergence of

spatially periodic patterns.

I. INTRODUCTION

Reaction-diffusion equations are often employed to

model systems outside of thermodynamic equilibrium. In

some cases, these systems self-organize to form spatio-

temporal structures.1 Prominent examples of such phenom-

ena are oscillatory chemical reactions: e.g., the Belousov-

Zhabotinsky (BZ) reaction produces oscillations and waves

in the concentration of the involved chemical species and the

chlorine dioxide-iodine-malonic acid (CDIMA) reaction pro-

duces stationary (Turing) patterns.2 Similar concepts of self-

organization have been applied to explain different phenom-

ena in biology.3,4

The linear stability analysis of such equations may

reveal possible instabilities in reaction-diffusion systems.

Simple chemical and biochemical reactions can become

unstable via a Hopf bifurcation and produce oscillatory

behaviour. The addition of a spatial coordinate allows for the

diffusion of the species and may produce stationary periodic

patterns via a Turing instability5 or the emergence of (travel-

ing) waves via a wave instability.5,6 Codimension-two bifur-

cations correspond to particular combinations of the

parameter values where two types of instability appear

simultaneously. In the proximity of such points, the associ-

ated dynamics have been extensively studied in the case of

Turing-Hopf7–10 and Turing-Turing11,12 codimension-two

bifurcation and analyzed for the Turing-wave codimension-
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two bifurcation in a few instances.13,14 In particular, in all

these cases, two instabilities appear simultaneously with two

characteristic spatial scales, which can be very different

depending on the parameter values. Such bifurcations appear

in the BZ reaction,13 in catalytic surfaces with promotors,15

in the modelization of vegetation patterns in drylands,12 as

well as in models of lipid domain formation in biomem-

branes.16,17 The interaction between different types of phos-

pholipids and proteins on the membrane of living cells

induces a spatial instability of the homogeneous state with a

short characteristic spatial scale.16 On the other hand, the

translocation of membrane proteins to the cytosol, where

they rapidly diffuse to a different location on the membrane,

may cause a spatial self-organization of the proteins on a

larger spatial scale.16,18 The coupling between these proc-

esses induces the emergence of oscillatory patterns at the

membrane at the larger spatial scale.17 This novel aspect is a

central motivation in setting up the models investigated in

this paper.

The SH equation is a generic equation for a non-

conserved order parameter, which originally was developed

for describing the instability of Rayleigh-Benard convec-

tion.19,20 The SH equation was also applied to biology, for

example, as a model of nonlocal coupling in biological sys-

tems describing neural tissues.21 A complex variant of the

SH equation has been previously employed to describe the

dynamics of class B lasers.22 The standard SH equation

undergoes a Turing instability following the increase of a

bifurcation parameter, examples of the emerging patterns are

reported in Figs. 1(a) and 1(c) in two and one spatial dimen-

sions. The structure of the SH equation permits a straightfor-

ward control of the spatial scale of the instability by

adjusting the parameters entering in the equation.

The CH equation describes the process of phase separa-

tion in a system with mass conservation.23 The system spon-

taneously segregates into spatial domains which grow and

coarse continuously, see Figs. 1(b) and 1(d) for 2D and 1D

examples. The difference between the evolution of the single

SH and CH equations with similar characteristics can be

appreciated in Fig. 1.

Here, we employ two coupled SH (CH) equations to

introduce two different spatial scales in a system with two

non-conserved (conserved) order parameters. The two equa-

tions are connected by an asymmetric coupling which indu-

ces a repertoire of spatio-temporal evolutions. While a

model with a symmetric coupling between the two equations

could be derived from an energy functional using a varia-

tional approach, asymmetrically coupled systems represent

an effective description. However, such asymmetric coupling

permits us to generate simple and generic models where two

spatial bifurcations compete and give rise to waves. The

combination of several CH may describe the process of

phase separation with three or more components. In particu-

lar, it could be of interest for the processes of lipid separation

at membranes24 or of phase separation in block copolymers

melt.25 The combination of two SH may mimic the coupling

of two layers where Turing patterns appear.26,27

The present article is organized as follows. In Sec. II the

studied models are introduced and the corresponding linear

stability analysis reported. Section III is devoted to the pre-

sentation of the results obtained in this study. In particular,

the linear stability diagrams for the two models are described

in Subsection III A, while Subsection III C reports detailed

numerical investigations of the two models. Finally, the

main results of this study are summarized in Sec. IV.

II. MODELS

Two simple models of multiscale pattern formation,

based on the asymmetric coupling of two SH (resp. CH)

equations, are the main subjects of this article and are intro-

duced in this section.

A. Coupled SH equations

We start considering the single SH equation, which was

originally derived from the equations for thermal convection,

but is commonly used as a generic model of pattern forma-

tion.20,28 The SH equation exhibits static Turing patterns

similar to the one observed for reaction-diffusion equations

of activator-inhibitor type. In particular, the SH equation

describes the spatial evolution of a single non-conserved

dynamic variable u

FIG. 1. Snapshots of a two-dimensional numerical simulations of a single SH

equation (a) and a single CH equation (b) corresponding to times 8, 40, and

80. The total size of the system is 31� 31. Spatio-temporal plots of a one-

dimensional numerical simulations of a single SH equation (c) and a single

CH equation (d), total time 3000 and total size L¼ 125. Parameter values are

k1¼ 2 and e ¼ 0:4. Time direction is going downwards in (c) and (d).
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@u

@t
¼ eu� 1

k2
1

r2 þ 1

� �2

u� u3; (1)

where the parameter e controls the linear stability of the ho-

mogeneous stationary solution (HSS) u0¼ 0 and the parame-

ter k1 is the critical characteristic wavenumber at the onset of

instability at e ¼ 0. One can easily determine the stability of

the solution u0 by the introduction of an infinitesimal spa-

tially periodic perturbation, namely by considering

u ¼ u0 þ du ext�ikx. The resulting dispersion relation x(k) is

real-valued and it depends on the wavenumber k as follows:

x kð Þ ¼ e� 1þ 2
k2

k2
1

� k4

k4
1

: (2)

When e > 0, the HSS become unstable for a finite interval of

wavenumbers around k1, namely, for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffi
e
pp
� k=k1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
e
pp

. The expected characteristic spatial scale of the

resulting Turing pattern is given by k1 ¼ 2p=k1.

Next, we consider two linearly coupled SH equations, as

simple model for multiscale pattern formation

@u

@t
¼ eu� 1

k2
1

r2 þ 1

� �2

u� u3 � av;

@v

@t
¼ ev� 1

k2
2

r2 þ 1

� �2

v� v3 þ au :

(3)

Each of these equations has a different characteristic length

ki ¼ 2p=ki, with i¼ 1, 2. Furthermore, the same control pa-

rameter e for the instability is used in both equations ensur-

ing that the instability occurs simultaneously in the

decoupled systems. The coupling parameter a is the same in

both equations. Note, however the opposite signs, which ren-

ders Eq. (3) non-variational, i.e., the dynamics of u and v in

Eq. (3) cannot be derived as variational derivates of some

functional Fðu; vÞ. We analyze the stability of the HSS

u0¼ v0¼ 0 by considering the following perturbations u
¼ u0 þ du ext�ikx and v ¼ v0 þ dvext�ikx. The linear stability

analysis leads to the following dispersion relation:

x kð Þ ¼ e� 1þ k2 k2
1 þ k2

2

k2
1k2

2

� k4 k4
1 þ k4

2

2k4
1k4

2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2
2 � k2

1

k2
1k2

2

� k4 k4
2 � k4

1

2k4
1k4

2

" #2

� a2

vuut ; (4)

which can produce spatial and spatio-temporal instabilities

depending on the parameter values. For a¼ 0, the two equa-

tions become uncoupled and two real dispersion relations

with maxima in k1 and k2 are obtained (see top panel of Fig.

2(a)). By coupling the two systems, the dispersion relation is

modified. Nevertheless, the real part of the leading eigen-

value still resembles the respective curve for the uncoupled

system with a¼ 0 and exhibits two maxima. The wavenum-

bers associated to these maxima will be the dominant modes

of the coupled dynamics. We will indicate them as modes 1

and 2, corresponding to small and large wavenumbers,

respectively. Furthermore, for sufficiently large coupling, the

leading eigenvalue becomes complex for low wavenumbers,

see middle and bottom panel of Fig. 2(a).

B. Coupled CH equations

The standard CH equation is commonly used as a para-

digmatic model of phase separation.28 In contrast to SH

equation, it describes the evolution of a single conserved

variable u

@u

@t
¼ r2 u3 � 2e

1

k2
1

u� e
1

k4
1

r2u

� �
: (5)

Again, the spatially HSS u0¼ 0 is a stationary solution of the

equation. By applying the perturbation du ext�ikx and by lin-

earizing Eq. (5) around u0, one obtains the dispersion rela-

tion as

x kð Þ ¼ 2e
k2

k2
1

� e
k4

k4
1

: (6)

For e > 0, the HSS become unstable for a finite interval of

wavenumbers bounded from above from k1, namely, for

0 < k <
ffiffiffi
2
p

k1. The characteristic spatial scale of the initial

pattern is given by the most unstable wavenumber, namely,

k1 ¼ 2p=k1. For e < 0, the system is unstable for small spa-

tial scales and higher order spatial derivatives are needed to

stabilize the system.

FIG. 2. Dispersion relation for two uncoupled (top) with a¼ 0 and coupled

(middle) with a¼ 0.2 (bottom) with a¼ 0.6 SH (a) and CH (b) equations.

Thick (thin) solid lines refer to real (imaginary) part of the eigenvalue x.

Parameter values are k1¼ 1 and k2¼ 5 and e ¼ 0:6.
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Analogously to the previous analysis, we linearly couple

two CH equations in an asymmetric way, as follows:

@u

@t
¼ r2 u3 � 2e

1

k2
1

u� e
1

k4
1

r2u

� �
� av;

@v

@t
¼ r2 v3 � 2e

1

k2
2

v� e
1

k4
2

r2v
� �

þ au :
(7)

As for the coupled SH equations, we assume the same value

of the control parameter e for both equations and the same

coupling a with opposite signs. Once more we analyze the sta-

bility of the HSS (u0,v0)¼ (0,0) by considering periodic per-

turbations to the vector (u, v), namely, ðdu ext�ikx; dv ext�ikxÞ.
The linear stability analysis leads to the following dispersion

relation:

x kð Þ ¼ ek2 k2
1 þ k2

2

k2
1k2

2

� ek4 k4
1 þ k4

2

2k4
1k4

2

6
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e2 k2

k2
2 � k2

1

k2
1k2

2

� k4 k4
2 � k4

1

2k4
1k4

2

" #2

� a2

vuut : (8)

As shown in Fig. 2(b), also in this case the coupled system

exhibits two real maxima in the dispersion relation, resembling

those of the uncoupled system. Furthermore, also in the present

case we will denote the wavenumbers associated to these max-

ima as mode 1 at small k and mode 2 at large k. The presence

of the coupling between the two equations induces the emer-

gence of imaginary components in the dispersion relation in the

low wave vector part of the spectrum, as shown in Fig. 2(b).

III. RESULTS

In order to characterize the two previously introduced

models, we first analyze their linear stability diagrams. In

addition, we have performed extensive numerical simula-

tions of the full nonlinear models.

A. Linear stability diagrams

The linear stability analysis indicates that different types

of behaviours are expected for different choices of the param-

eters e and a. The linear stability diagrams for both systems

are shown in Fig. 3. As a general remark, for small value of

the coupling a both systems present spatial patterns. However,

these are atypical spatial patterns, due to the coexistence of

real modes 1 and 2 with unstable complex modes associated

to non critical wavenumbers, see panels for a¼ 0.2 in Fig. 2.

The linear stability diagram for the coupled SH equa-

tions is shown in Fig. 3(a). For a large coupling constant a
and small values of the control parameter e, the HSS is sta-

ble. This state can lose stability in two different ways,

depending a is larger or smaller than a critical value ac. For

a> ac, one observes a wave bifurcation involving mode 1 at

ec ¼
1

2
� k2

1k2
2

k4
1 þ k4

2

; (9)

which corresponds to the solid red vertical line in Fig. 3(a).

For a< ac, the system undergoes a Turing instability for

mode 2 (solid black line in Fig. 3(a)) and at e ¼ ec an addi-

tional band of unstable oscillatory modes around mode 1

emerges (red dashed line in Fig. 3(a)). The two lines in the

phase diagram, associated to these transitions, cross in a

codimension-two point ðec; acÞ indicated by the blue dot in

Fig. 3(a). For decreasing a-values, at the dotted lines Fig.

3(a), the eigenvalue associated to mode 1 passes from com-

plex to real positive values, although other modes can still

remain complex.

The linear stability diagram for the coupled CH equa-

tions is shown in Fig. 3(b). For positive e > 0, the system

exhibits a wave bifurcation (red solid vertical line in Fig.

3(b)). Furthermore, at sufficiently large a values mode 1 is

unstable and complex. By decreasing the a parameter, the

system undergoes a secondary instability of mode 2 con-

nected with real eigenvalues (black solid line in Fig. 3(b)).

FIG. 3. Linear stability diagrams are given by Eqs. (4) and (8) for the parameters e and a. Solid black (red) lines in (a) show Turing (wave) bifurcation, whereas

the solid black lines in (b) correspond to emergence of an unstable band with finite wavenumber. The black (red) dashed lines indicate the emergence of a sec-

ondary Turing (wave) instability. Dotted lines mark the transition from real to complex maximum in the dispersion relation, see Fig. 2. Thick point indicates

codimension-two point ðec; acÞ. Insets show characteristics dispersion relations in the corresponding region, where solid (dashed) lines correspond to real

(imaginary) eigenvalues. Thin dashed horizontal lines are given for comparison with Fig. 4. Remaining parameters are k1¼ 1 and k2¼ 2.
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Below this black line, these two types of unstable modes

coexist. At sufficiently small a values, mode 1 becomes

purely real (dotted red line in Fig. 3(b)), although other

modes are still complex.

In Fig. 4, we systematically change the ratio between

the two parameters k1 and k2 for the two models. For the spe-

cial case k1¼ k2, the traveling solution is always present in-

dependently of the value of the other parameters (since the

imaginary components of x(k) in Eqs. (4) and (8) is in this

case constant and independent of k). The linear stability dia-

grams are symmetric around the point k1¼ k2.

For the coupled SH equations, the appearance of travel-

ing solutions does not depend on the coupling strength but

on the control parameter e (red lines in Fig. 4(a)). The critical

value of the e parameter, controlling the emergence of

waves, depends on the relation between the two scales k1 and

k2, and it can be analytically calculated from Eq. (9). For

k2 � k1, the secondary instability occurs at ec ¼ 0:5, see red

dashed line in Fig. 4(a). In between 0 < ec < 0:5, the dynam-

ics depends on the coupling and k2.

The linear stability diagram for the coupled CH equa-

tions is a simplified version of the previous case, as one can

appreciate by comparing panels (a) and (b) in Fig. 4. The

wave instability is always present, at least for not too large

values of e, however, large k2 enhances the appearance of the

spatial instability and promotes the competition between

both instabilities.

B. Numerical simulations

We have employed a time splitting pseudo spectral

method, similar to the one described in Ref. 29, to numerically

integrate Eqs. (3) and (7). The simulations have been per-

formed by considering mainly one dimensional systems with

size L ¼ 40p or L ¼ 80p with periodic boundary conditions.

For the numerical integration 512 or 1024 Fourier modes

have been alternatively used and integration time steps in the

range Dt¼ 0.001–0.01. The runs are usually initialized by

setting u and v to random values uniformly distributed in the

interval [�1;1].

The numerical simulations reproduce the results pre-

dicted by the linear stability analysis for small values of a,

while for larger coupling a nonlinear effects come into play

leading to a richer scenario not predicted by linear analysis.

Here, we focus on the competition between waves and

Turing patterns revealed by the coupled SH equations and on

the arrest of coarsening occurring in the coupled CH

equations.

1. Coupled SH equations

The numerically obtained phase diagram for the coupled

SH equations is shown in Fig. 5, which has been obtained by

keeping constant e (a) (for a certain set of values) and by

varying the other parameter, namely a (e). The parameter a
(e) is first increased and successively decreased of a constant

amount Da¼ 0.05 (De ¼ 0:05). Each simulation had a dura-

tion of 2000–20 000 time units and the next simulation in the

sequence is initialized by employing the final state of the

previous one. This allows to reveal a hysteretic transition in

the ðe; aÞ-plane for e > ec: the corresponding hysteretic

region is enclosed by the blue curves in Fig. 5. Therefore,

within this region traveling waves or Turing patterns can be

observed, depending on the initial conditions.

Some examples of Turing patterns and waves obtained

in the simulations are reported in Fig. 6. When both systems

are weakly coupled, i.e., small a in Fig. 5, two distinct

Turing patterns characterized by different spatial scales can

be observed in variables u and v (Fig. 6(a)). For larger a, the

coupling eliminates the instability with smaller characteristic

scale and generates a wave instability associated to the larger

spatial scale in both variables, see Fig. 6(b). Deep inside the

hysteretic region one can observe the coexistence of Turing

patterns, embedded in traveling waves (as shown in Fig.

6(c)). For very large e ’ 0:9 spatio-temporal chaotic irregu-

lar dynamics with defects is observable (see Fig. 6(d)) and

FIG. 4. Linear stability diagram are given by Eqs. (4) and (8) for the param-

eters e and k2, keeping a¼ 1 and k1¼ 1, for two coupled SH equations (a),

and two coupled CH equations (b). The lines have the same meaning as in

Fig. 3. Thin dashed vertical lines refer to the parameter k2 employed in

Fig. 3.

FIG. 5. Phase diagram ðe; aÞ for the coupled SH Eqs. (3) estimated numeri-

cally. For the details on the numerical simulation see the text. The solid and

dashed black (red) lines refer to the results of the linear stability analysis

and have the same meaning as in Fig. 3. The blue line with symbols denote

the limits if the hysteretic region. Parameter values are k1¼ 1 and k2¼ 2, the

system has been integrated for each couple of ðe; aÞ parameters for a time

20 000 with a time step Dt¼ 0.001 by considering a system size L ¼ 40p
and by employing 512 Fourier modes.
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we have verified that this is not a transient regime by per-

forming long simulations up to time t ’ 50 000.

2. Coupled CH equations

Examples of patterns found in simulations of the

coupled CH equations, for increasing coupling parameter a
are shown in Fig. 7. For small a, one observes initial coars-

ening in the u and v variables similar to what is found in the

uncoupled single CH equations in Fig. 7(a). As expected

from the linear stability analysis above, the initial domain

patterns of u and v have different characteristic wavelength.

However, the coarsening process stops after a finite time and

both variables—u and v—exhibit a domain pattern of the

same wavelength. For larger values of a, traveling waves are

observed in line with the occurrence of oscillatory unstable

modes in the linear stability analysis, see Figs. 7(b) and 7(c).

Figure 8 shows typical spatial patterns for u and v
emerging at long integration times for the different cases. In

particular, in Fig. 8(a) are reported the solutions for the

uncoupled equations, Fig. 8(b) shows patterns with equal

wavelength for u and v in the case of arrested coarsening

(occurring at small a), and Fig. 8(c) reports left-traveling

domains appearing at large a.

As already shown in Fig. 7(a), on short time scales one

has the typical dynamics of the single Cahn-Hilliard equa-

tion, i.e., a coarsening process. However, the subsystem with

larger wavelength coarsens faster than the other variable.

This process continues until the two variables u and v lock

into periodic patterns of the same characteristic length Lc

(see Fig. 9(a)). Once the two variables have taken on the

same wavelength, the coarsening process stops and Lc

remains constant. In this case, the profile of the two variables

is perfectly periodic with maxima and minima of both

FIG. 6. Spatio-temporal plots of the dynamics of u (left) and v (right) varia-

bles obtained after numerical integration of the coupled SH Eqs. (3) for the

parameters e ¼ 0:3 and a¼ 0.3 (a), e ¼ 0:4 and a¼ 1.6 (b), e ¼ 0:7 and

a¼ 1.2 (c), and e ¼ 0:9 and a¼ 0.6 (d). Rest of parameter values are k1¼ 1

and k2¼ 2. The integration time is 50, after discarding a transient of 2000

with Dt¼ 0.001, and the system size is set to L ¼ 40p with a spatial discreti-

zation Dx¼L=512 ’ 0.245. Time direction is going downwards in all panels.

FIG. 7. Spatio-temporal plots of the dynamics of the u (left) and v (right)

variables obtained after numerical integration of the coupled CH Eqs. (7) for

the parameters e ¼ 0:5 and a¼ 0.002 (a), a¼ 0.15 (b), and a¼ 0.2 (c). The

integration time is 1500 without any transient for (a) and 50 after a transient

of 2000 for (b) and (c) with Dt¼ 0.001, and system size is L ¼ 40p and spa-

tial discretization Dx¼L=512¼’0.245. Time direction is going downwards

in all panels.
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variables occurring in phase as shown in Fig. 8(b). For com-

parison, the evolution of the two uncoupled systems is

reported in Fig. 9(b), where coarsening is not arrested during

the simulation time window and the scaling of Lc grows log-

arithmically in time as expected for a one-dimensional CH

equation in the absence of noise.30 Furthermore, the spatial

configurations for the variables u and v do not lock even at

very long times, see Fig. 9(b).

We have also investigated the scaling of the time of arrest

TA of coarsening with the coupling parameter a. As shown in

Fig. 10(a), a power-law scaling of the type TA ’ a� g, with g
’ 0.8–0.9, is observable. Furthermore, the coarsening process

is arrested at increasing characteristic lengths LA
c diverging as

lnð1=aÞ for decreasing a-values, see Fig. 10(b). These two

scaling laws are essentially consistent with the logarithmic

coarsening in time reported for the deterministic one dimen-

sional CH equation, thus suggesting that the asymptotic value

for the exponent g should be one.

An arrest of coarsening has been previously reported for

scalar fields in one spatial dimension for the Oono-Shiwa

model.25 This is a modified version of the single CH equation,

with an additional linear coupling to the order parameter,

which has been developed to mimic phase separation in block

copolymer melts.25,31,32 The analysis of this model revealed

that the system arrests and gives rise to periodic regular stable

structures, similar to what we observe here for the coupled CH

equations. However, while the arrest of coarsening in the

Oono-Shiwa model is due to the stabilization of long-

wavelength modes by the additional linear term, this effect is

not present for the coupled CH equations studied here.

Instead, the arrest of coarsening stems from the interaction

of the u and v fields. The presence of the initially longer wave-

length mode in u accelerates the coarsening of initially the

shorter wavelength modes in v much more than vice versa.

Hence, one can say that each pattern acts as a template for the

other one and as a result coarsening stops. This is reminiscent

of domain pinning seen in dewetting processes on heterogene-

ous substrates,33,34 or of spatial forcing as seen in single CH

equations mimicking optical grating experiments,35 CDIMA

photosensitive reactions,36 and single SH equations.37

IV. CONCLUSIONS

We examined coupled SH and the CH equations as sim-

ple models for pattern formation in systems with competing

instabilities of different characteristic wavelength. While a

single SH o CH equation exhibits only instabilities con-

nected with real eigenvalues and modes and, therefore, can

only produce stationary periodic spatial patterns (SH) or a

slow domain coarsening (CH), the asymmetric coupling of

two equations typically leads to the occurrence of oscillatory

unstable modes with complex eigenvalues and, conse-

quently, to the emergence of traveling waves and domains.

Using linear stability analysis, we determine the condi-

tions for the occurrence of stationary and oscillatory instabil-

ities and their dependence on the parameters in the coupled

SH and CH equations. In particular, the choice of opposite

signs in the coupling produces the appearance of complex

eigenvalues in the dispersion relations, see Eqs. (4) and (8).

At the same time, this choice does not allow to rewrite the

FIG. 8. Characteristic patterns for the u, v variables in one spatial dimension

obtained by numerical integration of Eqs. (7) for parameters e ¼ 0:5 and

a¼ 0 (a), a¼ 0.002 (b), a¼ 0.2 (c). The systems size is L ¼ 80p and the

integration is performed by employing a time splitting pseudo-spectral code

with 1024 Fourier modes and an integration time step Dt¼ 0.01. The config-

urations in (a) refer to an integration time T¼ 41 942, while those in (b) and

(c) to a time t¼ 671 088.

FIG. 9. Characteristic size Lc of the domains obtained by numerical integra-

tion of Eqs. (7) for the parameters e ¼ 0:5 and a¼ 0.002 (a), a¼ 0.0 (b).

The (red) filled symbols refer to variable u, and the (black) empty to v. The

system size and integration details are as in Fig. 8.

FIG. 10. Average arrest time TA (a) and average arrest length LA
c (b) as a

function of the coupling a. The averages have been performed over 20–60

different initial conditions. The standard deviation measured in the case of

TA is of the order of the averages and in the case of LA
c of the order of 10%

of the averages. The dashed lines indicate power-law (logarithmic) fitting to

the data for TA (LA
c ), namely, TA ’ 9:5a�0:84 (Lc

A ’ 3:123� 1:435lnðaÞ).
The system size and integration details are as in Fig. 8.

043142-7 Sch€uler et al. Chaos 24, 043142 (2014)



coupled system as a variational derivative of an associated

energy functional.

The linear stability analysis is complemented by numeri-

cal simulations of the full nonlinear models in a wide param-

eter range. These studies reveal a region of coexistence of

traveling waves and Turing patterns in the coupled SH equa-

tions. Furthermore, a rich variety of patterns has been

observed ranging from traveling waves with entrapped

Turing patterns to one-dimensional defect turbulence.

On the other hand, for coupled CH equations the loga-

rithmic coarsening, typical of the one-dimensional single CH

equations, is arrested even in presence of a very small cou-

pling. The spatial patterns of the two variables coarsen at dif-

ferent velocities. The pattern with smaller characteristic

wavelength coarsens faster than the one with longer wave-

length until the profiles of the two patterns attain the same

spatial periodicity and are locked in space. As a result, coars-

ening stops and the wavenumber stays constant for arbitrary

long times: the final domain pattern is stable and stationary

in time. The corresponding final state for the two variables

has the same wavelength, but different amplitude profiles.

Furthermore, the asymptotic characteristic length diverges

logarithmically for vanishingly small coupling.

Arrest of coarsening has been previously reported for

scalar fields in one spatial dimension for a modified version

of the single specie CH equation developed to mimic phase

separation in block copolymer melts.25,31,32 In this case, the

final state reveals a periodic stable structure. On the contrary,

the arrest of coarsening reported in Ref. 38, was associated

to an unstable asymptotic pattern with a diverging amplitude.

In two dimensions arrest of coarsening has been shown in

Ref. 39 for spinodal decomposition of mixtures in presence

of an externally controlled chemical reaction, in Ref. 40 for

a CH, where the order parameter is subjected to an external

stirring, both for active and passive mixtures, and in Ref. 41

for a modified CH, where the order parameter is coupled lin-

early to the Langevin equations describing the dynamics of

Janus particles.

The results obtained here are analogous to what is found

in more complex models describing lipid and protein dynam-

ics at membranes of biological cells17,42 where waves have

been observed following similar mechanisms. Since the

study of the single CH equation linearly coupled to the order

parameter has been motivated by phase separation in block

copolymers melt,25 the analysis of two linearly coupled CH

equations can eventually find application in the study of self-

directed self-assembly observed in mixtures of copolymers

and nanoparticles.43 Possible extensions of this study may

consider the conserved SH equation44 where higher spatial

derivatives are included.

In summary, a simple linear asymmetric coupling

between two nonlinear equations may produce substantial

changes in the dynamics, producing waves, chaotic dynam-

ics, hysteresis, or arrest of coarsening.
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