Pattern formation often occurs in spatially extended physical, biological and
chemical systems due to an instability of the homogeneous steady state. The
type of the instability usually prescribes the resulting spatio-temporal
patterns and their characteristic length scales. However, patterns resulting
from the simultaneous occurrence of instabilities cannot be expected to be
simple superposition of the patterns associated with the considered
instabilities. To address this issue we design two simple models composed by
two asymmetrically coupled equations of non-conserved (Swift-Hohenberg
equations) or conserved (Cahn-Hilliard equations) order parameters with
different characteristic wave lengths. The patterns arising in these systems
range from coexisting static patterns of different wavelengths to traveling
waves. A linear stability analysis allows to derive a two parameter phase
diagram for the studied models, in particular revealing for the Swift-Hohenberg
equations a co-dimension two bifurcation point of Turing and wave instability
and a region of coexistence of stationary and traveling patterns. The nonlinear
dynamics of the coupled evolution equations is investigated by performing
accurate numerical simulations. These reveal more complex patterns, ranging
from traveling waves with embedded Turing patterns domains to spatio-temporal
chaos, and a wide hysteretic region, where waves or Turing patterns coexist.
For the coupled Cahn-Hilliard equations the presence of an weak coupling is
sufficient to arrest the coarsening process and to lead to the emergence of
purely periodic patterns. The final states are characterized by domains with a
characteristic length, which diverges logarithmically with the coupling
amplitude.Comment: 9 pages, 10 figures, submitted to Chao