885 research outputs found

    Compactifications with S-Duality Twists

    Full text link
    We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills coupled to supergravity. The reduction cannot be done on the action itself, but must be done either on the field equations or on a duality invariant form of the action, such as one in the doubled formalism in which potentials are introduced for both electric and magnetic fields. The resulting theory in odd-dimensions has massive form fields satisfying a self-duality condition dA∌m∗AdA \sim m*A. We construct such theories in D=3,5,7.Comment: Latex, 26 pages. References adde

    Pseudo-unitary symmetry and the Gaussian pseudo-unitary ensemble of random matrices

    Full text link
    Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudo-unitary group. Further, we develop a random matrix theory which is invariant under such a group and call this ensemble of pseudo-Hermitian random matrices as the pseudo-unitary ensemble. We obtain exact results for the nearest-neighbour level spacing distribution for (2 X 2) PT-symmetric Hamiltonian matrices which has a novel form, s log (1/s) near zero spacing. This shows a level repulsion in marked distinction with an algebraic form in the Wigner surmise. We believe that this paves way for a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so on.Comment: 9 pages, 2 figures, LaTeX, submitted to the Physical Review Letters on August 20, 200

    Domain Walls of D=8 Gauged Supergravities and their D=11 Origin

    Get PDF
    Performing a Scherk-Schwarz dimensional reduction of D=11 supergravity on a three-dimensional group manifold we construct five D=8 gauged maximal supergravities whose gauge groups are the three-dimensional (non-)compact subgroups of SL(3,R). These cases include the Salam-Sezgin SO(3) gauged supergravity. We construct the most general half-supersymmetric domain wall solutions to these five gauged supergravities. The generic form is a triple domain wall solution whose truncations lead to double and single domain wall solutions. We find that one of the single domain wall solutions has zero potential but nonzero superpotential. Upon uplifting to 11 dimensions each domain wall becomes a purely gravitational 1/2 BPS solution. The corresponding metric has a 7+4 split with a Minkowski 7-metric and a 4-metric that corresponds to a gravitational instanton. These instantons generalize the SO(3) metric of Belinsky, Gibbons, Page and Pope (which includes the Eguchi-Hanson metric) to the other Bianchi types of class A.Comment: 23 pages, 1 figure, minor changes, references adde

    Tensor-scalar gravity and binary-pulsar experiments

    Get PDF
    Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation are interpreted as a scalar analog of ferromagnetism: "spontaneous scalarization". This phenomenon leads to very significant deviations from general relativity in conditions involving strong gravitational fields, notably binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily vanish when the weak-field scalar coupling tends to zero. We compute the scalar "form factors" measuring these deviations, and notably a parameter entering the pulsar timing observable gamma through scalar-field-induced variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation between tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are already very tightly constrained by published data on three binary-pulsar systems. We contrast the probing power of pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure

    Specific heat and magnetic order in LaMnO_{3+\delta}

    Full text link
    Magnetic and specific-heat measurements are performed in three different samples of LaMnO_{3+\delta}, with \delta=0.11, 0.15 and 0.26, presenting important disorder effects, such as carrier localization, due to high amounts of La and Mn vacancies. For the samples with \delta =0.11 and 0.15, magnetic measurements show signatures of a two-step transition: as the temperature is lowered, the system enters a ferromagnetic phase followed by a disorder-induced cluster-glass state. Spin-wave-like contributions and an unexpected large linear term are observed in the specific heat as a function of temperature. In the sample with the highest vacancy content, \delta=0.26, the disorder is sufficient to suppress even short-range ferromagnetic order and yield a spin-glass-like state.Comment: RevTeX 2-col, 8 pages, 5 ps figures included, submitted to PR

    Feature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of AlzheimerŚłs disease

    Get PDF
    AlzheimerŚłs disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD

    On Physical Equivalence between Nonlinear Gravity Theories

    Full text link
    We argue that in a nonlinear gravity theory, which according to well-known results is dynamically equivalent to a self-gravitating scalar field in General Relativity, the true physical variables are exactly those which describe the equivalent general-relativistic model (these variables are known as Einstein frame). Whenever such variables cannot be defined, there are strong indications that the original theory is unphysical. We explicitly show how to map, in the presence of matter, the Jordan frame to the Einstein one and backwards. We study energetics for asymptotically flat solutions. This is based on the second-order dynamics obtained, without changing the metric, by the use of a Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the ADM energy is positive for solutions close to flat space. The proof of this Positive Energy Theorem relies on the existence of the Einstein frame, since in the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199

    Effectiveness and safety of sofosbuvir‐based regimens plus an NS5A inhibitor for patients with HCV genotype 3 infection and cirrhosis: results of a multicenter real‐life cohort

    Get PDF
    [Abstract] Patients with HCV genotype 3 (GT3) infection and cirrhosis are currently the most difficult to cure. We report our experience with sofosbuvir+daclatasvir (SOF+DCV) or sofosbuvir/ledipasvir (SOF/LDV), with or without ribavirin (RBV) in clinical practice in this population. This was a multicenter observational study including cirrhotic patients infected by HCV GT3, treated with sofosbuvir plus an NS5A inhibitor (May 2014‐October 2015). In total, 208 patients were included: 98 (47%) treatment‐experienced, 42 (20%) decompensated and 55 (27%) MELD score >10. In 131 (63%), treatment was SOF+DCV and in 77 (37%), SOF/LDV. Overall, 86% received RBV. RBV addition and extension to 24 weeks was higher in the SOF/LDV group (95% vs 80%, P=.002 and 83% vs 72%, P=.044, respectively). A higher percentage of decompensated patients were treated with DCV than LDV (25% vs 12%, P=.013). Overall, SVR12 was 93.8% (195/208): 94% with SOF+DCV and 93.5% with SOF/LDV. SVR12 was achieved in 90.5% of decompensated patients. Eleven treatment failures: 10 relapses and one breakthrough. RBV addition did not improve SVR (RR: 1.08; P=.919). The single factor associated with failure to achieve SVR was platelet count <75×10E9/mL (RR: 3.50, P=.019). In patients with MELD <10, type of NS5A inhibitor did not impact on SVR12 (94% vs 97%; adjusted RR: 0.49). Thirteen patients (6.3%) had serious adverse events, including three deaths (1.4%) and one therapy discontinuation (0.5%), higher in decompensated patients (16.7% vs 3.6%, P<.006). In patients with GT3 infection and cirrhosis, SVR12 rates were high with both SOF+DCV and SOF/LDV, with few serious adverse events
    • 

    corecore