22 research outputs found

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Site formation processes, human activities and palaeoenvironmental reconstructions from archaeobotanical records in cave and rock-shelter sites in NE Iberia

    No full text
    The main aim of this paper is to evaluate the potential of cave and rock-shelter sites for palaeoecological and archaeobotanical research. Climate conditions in the Mediterranean region and the depositional and post-depositional dynamics involved in the formation processes of open-air sites cause, in many cases, poor conservation of archaeobotanical remains, especially in the case of pollen, affected by oxidation and other taphonomic agents. However, more stable temperature and humidity, as found in cave and rock-shelter sites, provide optimum conditions for the preservation of vegetal remains. This study presents integrated archaeobotanical data from several NE Iberian sites, with occupations from the Middle Palaeolithic to the Bronze Age. On the one hand, the diachronic study of the pollen record in archaeological stratigraphies reconstructs vegetation evolution and abrupt climate changes during the Pleistocene and the Holocene. On the other hand, archaeopalynology reveals the need to consider different taphonomic agents in the interpretation of pollen records in archaeological cave and rock-shelter sites, especially the anthropogenic input of plants to the archaeological contexts. The study of anthracological remains offers a picture of the surrounding wooded landscape, and provides data to characterise vegetal resource management and to verify which plants were brought to the cave. Finally. the carpological record shows the presence of edible wild fruits from bushes and trees in the Pleistocene and beginnings of the Holocene, and cultivated and synanthropic plants from the Middle Holocene onwards

    Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database

    Get PDF
    Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p &lt; 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p &lt; 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    Coeducación : una escuela hacia la igualdad

    No full text
    Mención honorífica de la convocatoria de premios 'Irene: la paz empieza en casa 2008'. Incluye resumen con las actividades realizadas en el proyectoPresenta un proyecto de coeducación para la igualdad de sexos realizado en el IES 'Reyes de España' en Linares (Jaén), entre los cursos 2006 y 2008. A través del proyecto se han introducido cambios que incluyen una perspectiva de género en la práctica docente buscando favorecer prácticas correctoras de estereotipos sexistas; planifica objetivos y actuaciones para corregir desigualdades y discriminaciones sexistas, promueve la autoformación y el trabajo en equipo; fomenta un uso no sexista del lenguaje; utiliza una metodología activa, participativa, significativa y lúdica; utiliza las nuevas tecnologías como edición de video, carteles, página web, presentaciones didácticas en PowerPoint e Impress, revistas digitales, ejercicios informáticos en software libre realizados con Flash, Graffitis, campañas publicitarias, periódico escolar, etc.; incorpora procedimientos de evaluación para valorar el grado de consecución de los objetivos establecidos; establece mecanismos de difusión escrita, informática y audiovisual a través de una página web; y utiliza materiales y recursos en español, francés e inglés.AndalucíaBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín, 5 - 3 Planta; 28014 Madrid; Tel. +34917748000; Fax +34917748026; [email protected]

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    International audienceBackground: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/ hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH 2 O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH 2 O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH 2 O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    Background: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p &lt; 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p &lt; 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p &lt; 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p &lt; 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p &lt; 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    Background: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p &lt; 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p &lt; 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p &lt; 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p &lt; 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p &lt; 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073
    corecore