259 research outputs found

    Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities

    Get PDF
    OBJECTIVE: To determine the magnitude of potentially causal relationships among vascular risk factors (VRFs), large-artery atheromatous disease (LAD), and cerebral white matter hyperintensities (WMH) in 2 prospective cohorts. METHODS: We assessed VRFs (history and measured variables), LAD (in carotid, coronary, and leg arteries), and WMH (on structural MRI, visual scores and volume) in: (a) community-dwelling older subjects of the Lothian Birth Cohort 1936, and (b) patients with recent nondisabling stroke. We analyzed correlations, developed structural equation models, and performed mediation analysis to test interrelationships among VRFs, LAD, and WMH. RESULTS: In subjects of the Lothian Birth Cohort 1936 (n = 881, mean age 72.5 years [SD ±0.7 years], 49% with hypertension, 33% with moderate/severe WMH), VRFs explained 70% of the LAD variance but only 1.4% to 2% of WMH variance, of which hypertension explained the most. In stroke patients (n = 257, mean age 74 years [SD ±11.6 years], 61% hypertensive, 43% moderate/severe WMH), VRFs explained only 0.1% of WMH variance. There was no direct association between LAD and WMH in either sample. The results were the same for all WMH measures used. CONCLUSIONS: The small effect of VRFs and LAD on WMH suggests that WMH have a large “nonvascular,” nonatheromatous etiology. VRF modification, although important, may be limited in preventing WMH and their stroke and dementia consequences. Investigation of, and interventions against, other suspected small-vessel disease mechanisms should be addressed

    Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study

    Get PDF
    Abstract Research has suggested that the retinal vasculature may act as a surrogate marker for diseased cerebral vessels. Retinal vascular parameters were measured using Vessel Assessment and Measurement Platform for Images of the Retina (VAMPIRE) software in two cohorts: (i) community-dwelling older subjects of the Lothian Birth Cohort 1936 (n = 603); and (ii) patients with recent minor ischaemic stroke of the Mild Stroke Study (n = 155). Imaging markers of small vessel disease (SVD) (white matter hyperintensities [WMH] on structural MRI, visual scores and volume; perivascular spaces; lacunes and microbleeds), and vascular risk measures were assessed in both cohorts. We assessed associations between retinal and brain measurements using structural equation modelling and regression analysis. In the Lothian Birth Cohort 1936 arteriolar fractal dimension accounted for 4% of the variance in WMH load. In the Mild Stroke Study lower arteriolar fractal dimension was associated with deep WMH scores (odds ratio [OR] 0.53; 95% CI, 0.32–0.87). No other retinal measure was associated with SVD. Reduced fractal dimension, a measure of vascular complexity, is related to SVD imaging features in older people. The results provide some support for the use of the retinal vasculature in the study of brain microvascular disease

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function

    Sleep and cognitive ageing in the 8th decade of life

    Get PDF
    We examined associations between self-reported sleep measures and cognitive level and change (age 70-76 years) in a longitudinal, same-year-of-birth cohort study (baseline N = 1,091; longitudinal N = 664). We also leveraged GWAS summary data to ascertain whether polygenic scores (PGS) of chronotype and sleep duration related to self-reported sleep, and to cognitive level and change. Shorter sleep latency was associated with significantly higher levels of visuospatial ability, processing speed, and verbal memory (β ≥ |0.184|, SE ≤ 0.075, p ≤ 0.003). Longer daytime sleep duration was significantly associated slower processing speed (β = -0.085, SE = 0.027, p = 0.001), and with steeper 6-year decline in visuospatial reasoning (β = -0.009, SE = 0.003, p = 0.008), and processing speed (β = -0.009, SE = 0.002, p < 0.001). Only longitudinal associations between longer daytime sleeping and steeper cognitive declines survived correction for important health covariates and false discovery rate (FDR). PGS of chronotype and sleep duration were nominally associated with specific self-reported sleep characteristics for most SNP thresholds (standardised β range = |0.123 to 0.082|, p range = 0.003 to 0.046), but neither PGS predicted cognitive level or change following FDR. Daytime sleep duration is a potentially important correlate of cognitive decline in visuospatial reasoning and processing speed in older age, whereas cross-sectional associations are partially confounded by important health factors. A genetic propensity toward morningness and sleep duration were weakly, but consistently, related to self-reported sleep characteristics, and did not relate to cognitive level or change

    Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936

    Get PDF
    Background: Iodine deficiency is one of the three key micronutrient deficiencies highlighted as major public health issues by the World Health Organisation. Iodine deficiency is known to cause brain structural alterations likely to affect cognition. However, it is not known whether or how different (lifelong) levels of exposure to dietary iodine influences brain health and cognitive functions. Methods: From 1091 participants initially enrolled in The Lothian Birth Cohort Study 1936, we obtained whole diet data from 882. Three years later, from 866 participants (mean age 72 yrs, SD ±0.8), we obtained cognitive information and ventricular, hippocampal and normal and abnormal tissue volumes from brain structural magnetic resonance imaging scans (n=700). We studied the brain structure and cognitive abilities of iodine-rich food avoiders/low consumers versus those with a high intake in iodine-rich foods (namely dairy and fish). Results: We identified individuals (n=189) with contrasting diets, i) belonging to the lowest quintiles for dairy and fish consumption, ii) milk avoiders, iii) belonging to the middle quintiles for dairy and fish consumption, and iv) belonging to the middle quintiles for dairy and fish consumption. Iodine intake was secured mostly though the diet (n=10 supplement users) and was sufficient for most (75.1%, median 193 μg/day). In individuals from these groups, brain lateral ventricular volume was positively associated with fat, energy and protein intake. The associations between iodine intake and brain ventricular volume and between consumption of fish products (including fish cakes and fish-containing pasties) and white matter hyperintensities (p=0.03) the latest being compounded by sodium, proteins and saturated fats, disappeared after type 1 error correction. Conclusion: In this large Scottish older cohort, the proportion of individuals reporting extreme (low vs. high)/medium iodine consumption is small. In these individuals, low iodine-rich food intake was associated with increased brain volume shrinkage, raising an important hypothesis worth being explored for designing appropriate guidelines
    corecore