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Abstract 

 

Background: Iodine deficiency is one of the three key micronutrient deficiencies highlighted as major 

public health issues by the World Health Organisation. Iodine deficiency is known to cause brain 

structural alterations likely to affect cognition. However, it is not known whether or how different 

(lifelong) levels of exposure to dietary iodine influences brain health and cognitive functions.  

Methods: From 1091 participants initially enrolled in The Lothian Birth Cohort Study 1936, we 

obtained whole diet data from 882. Three years later, from 866 participants (mean age 72 yrs, SD 

±0.8), we obtained cognitive information and ventricular, hippocampal and normal and abnormal 

tissue volumes from brain structural magnetic resonance imaging scans (n=700). We studied the 

brain structure and cognitive abilities of iodine-rich food avoiders/low consumers versus those with 

a high intake in iodine-rich foods (namely dairy and fish). 

Results: We identified individuals (n=189) with contrasting diets, i) belonging to the lowest quintiles 

for dairy and fish consumption, ii) milk avoiders, iii) belonging to the middle quintiles for dairy and 

fish consumption, and iv) belonging to the middle quintiles for dairy and fish consumption. Iodine 

intake was secured mostly though the diet (n=10 supplement users) and was sufficient for most 

(75.1%, median 193 µg/day). In individuals from these groups, brain lateral ventricular volume was 

positively associated with fat, energy and protein intake. The associations between iodine intake and 

brain ventricular volume and between consumption of fish products (including fish cakes and fish-

containing pasties) and white matter hyperintensities (p=0.03) the latest being compounded by 

sodium, proteins and saturated fats, disappeared after type 1 error correction. 

Conclusion: In this large Scottish older cohort, the proportion of individuals reporting extreme (low 

vs. high)/medium iodine consumption is small. In these individuals, low iodine-rich food intake was 

associated with increased brain volume shrinkage, raising an important hypothesis worth being 

explored for designing appropriate guidelines. 

 

Keywords 

Ageing, iodine, brain, MRI 
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1. Introduction 

Iodine is one of the three key micronutrient for which deficiency is highlighted as a major public health 

issue by the World Health Organisation, and the most preventable cause of mental retardation and 

brain damage (1). While the role of iodine in neurodevelopment has become better understood in 

early life, there is little evidence available regarding the lifelong impact of iodine on brain function. 

European countries are usually assumed to have sufficient dietary iodine intake, but the UK has been 

classified as insufficient (2,3). This is a particular threat to pregnant women and their offspring, since 

insufficient early exposure to iodine leads to blunted mental capacity. Indeed, the offspring of mothers 

taking part in the ALSPAC study (www.bristol.ac.uk/alspac/) had lower IQ at age 8 if maternal iodine 

in pregnancy had been in the lowest quartile (4). Childhood IQ is known to be one of the key 

determinants of later life cognition and wellbeing, and is associated with mortality, morbidity and 

frailty in old age (5).  

Iodine is obtained mainly through the diet, with no ongoing iodine-fortification programme in the UK. 

The main sources of iodine in the British diet are milk and dairy products, as well as fish and seafood. 

While cross-sectional surveys revealed mild insufficiency in the population  (1), recent studies have 

highlighted that most women struggle to reach the recommended iodine daily intake (150 µg/day), a 

recommended intake that increases during pregnancy to 250 µg/day (6). 

Iodine deficiency, mainly in children and young adults, has been suggested  to cause certain brain 

proteins to be down-regulated in particular brain regions, anterior commissure axons and mRNA 

expression to be reduced, and dendrite size to be altered resulting in potential premature cell 

apoptosis. Additionally, iodine deficiency may cause a reduction in cerebellar cell size and decreased 

myelination throughout the central nervous system (7), and, therefore, may be related to brain 

atrophy and brain white matter damage. Altogether, such changes are likely to affect cognitive 

functions. Preservation of mental / cognitive capacities is key in having a healthy long life, as well as 

enabling society to achieve its full productivity potential. However, it is not known how different 

exposures to dietary iodine throughout life influences brain health and cognition in the elderly.  

Here, we investigate the link between estimated dietary iodine intake, brain structural measurements 

from magnetic resonance imaging (MRI) and cognitive abilities in the Lothian Birth Cohort 1936 

(LBC1936) (8) with the hypothesis that individuals most likely to have a sustained sufficient intake of 

iodine-rich foods in their diets have better preserved brain health in late adulthood and, consequently, 

better cognitive performance.  This study aims to estimate whether very low or high iodine intake 

throughout life is associated with cognitive abilities and brain health in later life. Acknowledging the 

difficulties in assessing lifelong exposure to nutrients, the analysis is carried out by relating dietary 

http://www.bristol.ac.uk/alspac/
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measures based on iodine-rich food intake from individuals with specific dietary patterns more likely 

to be sustained through longer periods of time: fish/dairy avoiders and low consumers, versus groups 

with medium (sufficient) intake and high consumers) to measures of cognitive function, brain atrophy 

and brain white matter damage in later life. We also explored whether childhood intelligence (IQ) is 

associated with iodine consumption levels in late adulthood, thus, enabling to inform the 

development of evidence-based recommendations for the design and targeting of dietary 

interventions. Finally, since iodine is a critical component of the thyroid hormones, we analyse the 

stability of the thyroid functioning across the three years elapsed from the collection of the dietary 

data and the cognitive and brain imaging data, through the analysis of relevant laboratory data 

obtained at both time points. 

 

2. Materials and Methods 

2.1 Participants 

From the LBC1936, which comprises community-dwelling surviving members of the Scottish Mental 

Survey of 1947(8), 1091 individuals (548 men and 543 women) with an average age of 69.5 (SD=0.8) 

years completed cognitive tests, and provided personality, demographic, health, lifestyle, habitual diet 

information (participants completed a 165 item Food Frequency Questionnaire) and blood samples 

on a first wave of data collection, between 2004 and 2007. On a second wave of data collection, 866 

participants (mean age 72.7 years, SD 0.8 years) repeated almost all assessments from wave 1 with 

the exception of the dietary questionnaire, and a subgroup (n=700) had an MRI brain scan. The main 

causes for withdrawal at wave 2, as reported elsewhere(9), were: death (n=19), lost contact (n=20), 

health reasons (n=64), dementia (n=7), care roles (n=13) and lack of time (n=17). This study uses 

dietary information (wave 1), laboratory data obtained from the analyses of the blood samples (waves 

1 and 2), and cognitive and imaging data (wave 2). The research was carried out in compliance with 

the Helsinki Declaration. Written informed consent was obtained from all participants under protocols 

approved by the Lothian (REC 07/MRE00/58) and Scottish Multicentre (MREC/01/0/56) Research 

Ethics Committees. 

2.2 MRI acquisition and processing 

MRI scans were acquired using a 1.5T GE Signa Horizon HDxt clinical scanner (General Electric, 

Milwaukee, WI, USA) operating in research mode and using a self-shielding gradient set with 

maximum gradient of 33 mT/m, and an 8-channel phased-array head coil. The imaging acquisition and 

processing protocol is fully described in(10). For this particular study, we used hippocampal, 

ventricular, subarachnoid space, cerebellar and white matter hyperintensity volumes, all adjusted for 
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intracranial volume, as it has been reported that these brain imaging parameters could be influenced 

by deficient iodine intake(7). They were obtained from a high resolution T1-weighted (T1W), and 

whole brain T2- (T2W), T2*- (T2*W) and fluid attenuated inversion recovery (FLAIR)-weighted MRI 

sequences.  

Briefly, brain ventricular boundaries were semi-automatically delineated from the T1W volume scan 

using a region-growing thresholding method from the Region of Interest tool in Analyze 9.0TM 

(AnalyzeDirect, Mayo Clinic) software. Hippocampi were also segmented from the high-resolution 

T1W volume scan using an automatic atlas-based segmentation pipeline that uses FSL tools: 

SUSAN(11), FLIRT(12) and FIRST(13), followed by manual editing when required. Intracranial volume 

was obtained semi-automatically from thresholding the T2*W sequence using the Object Extraction 

tool in Analyze 9.0TM, followed by manual removal of erroneously included structures and rectification 

of the inferior limit at the level of the odontoid peg. A validated multispectral image segmentation 

method: MCMxxxVI(14) implemented on a freely available tool: bric1936 

(www.sourceforge.net/projects/bric1936), was used to extract white matter hyperintensities (WMH) 

and cerebrospinal fluid from the colour data fusion of co-registered T2*W and FLAIR images. 

Superficial subarachnoid space (SSS, the space between the inner edge of the dura and the brain 

cortical surface) volume was calculated as the difference between the total cerebrospinal fluid and 

the ventricular volumes. Finally, cerebellar white matter and cortical volumes were obtained 

automatically using FreeSurfer (http://freesurfer.net/). 

 

2.3 Cognitive testing 

For this study, we used cognitive measures obtained at the time of the MRI scan / wave 2 (mean age 

72.7, SD 0.8 years). These cognitive variables, described in (8), were: a general cognitive factor (g), 

general processing speed (g-speed) and general memory (g-memory). These cognitive ability 

measures (i.e. g, g-speed and g-memory) were generated using principal component analysis from 

batteries of well-validated cognitive tests. To derive g, six subtests of the WAIS-IIIUK (15) (Digit Symbol, 

Digit Span Backward, Symbol Search, Letter-Number Sequencing, Block Design & Matrix Reasoning) 

were used. g-memory was derived from five subtests from the WMS-IIIUK (16) (Logical Memory Total 

Immediate & Delayed Recall, Verbal Paired Associates Immediate & Delayed Recall, & Spatial Span 

Total Score) and two subtests from the WAIS-IIIUK (Letter-Number Sequencing & Digit Span Backward). 

g-speed was obtained from two reaction time tests (Simple Reaction Time & Choice Reaction Time), 

an Inspection Time test(8), and two WAIS-IIIUK subtests (Digit Symbol & Symbol Search). Childhood 

intelligence was derived from scores on the Moray House test taken by the participants at age 11 

years(8). 

http://www.sourceforge.net/projects/bric1936
http://freesurfer.net/
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2.4 Diet 

All study participants (n=1091) were asked to complete the Scottish Collaborative Group Food 

Frequency Questionnaire (SCG-FFQ) at home and return it by post. Of these, 98 were not returned, 26 

were returned blank, and 39 had more than 10 missing items and were therefore excluded from the 

analyses. Individuals with extreme energy intakes (<2.5th or >97.5th centile, n=46) were also excluded 

to obtain the most reliable food frequency data(17). The SCG-FFQ is a self-report instrument validated 

for older adults(17), where respondents rate the frequency of consumption of standard portions of 

175 different foods and drinks over the last 2-3 months (rarely/never, 1-3 per month, 1 per week, 2-3 

per week, 4-6 per week, 1 per day, 2-3 per day, 4-6 per day or 7+ per day) and responses are used to 

estimate typical micro and macro nutrient intakes. For this study, consumption (g/day) of specific 

foods with high iodine content was extracted (i.e. milk, other dairy, fish (white, oily, canned and fish 

products), shellfish), and the habitual daily intake of iodine was calculated. Intake of dietary 

supplements was also reported. To assess the ability of the SCG-FFQ in estimating iodine intake, a 

separate dietary assessment was carried out: iodine intakes estimated after 50 Scottish participants 

completed the SCG FFQ were compared with 4-day diet records and excretion of iodine in 24 hour 

urine samples. Urinary iodine was calculated employing a ISO9000 accredited laboratory and mass 

spectrometry. There was moderate / fair agreement between the SCG FFQ and dietary records 

(rs=0.488, kw=0.222, with low (16%) gross misclassification to the opposite tertile). The agreement 

between SCG FFQ and urinary excretion was weaker (rs=0.329, with low (18%) gross misclassification 

to the opposite tertile).  

With the assumption that extreme, or very specific, consumption patterns are likely to express a trait 

possibly reflecting the long term intake of specific nutrients, we specifically focus on groups 

representing opposite ends of the iodine intake spectrum: low iodine consumers (those with low 

intakes of dairy foods and fish, and dairy avoiders) and moderate-high iodine consumers (those with 

medium or high intakes of dairy foods and fish).   

 

For the purpose of the analyses, the following contrasting groups were formed: 

i) Group A (low intake of dairy and fish): Those in the lowest quintile for dairy 

consumption (less than 151 gram per day) and the lowest two quintiles for fish 

consumption (less than 37 g per day) 
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ii) Group B (dairy avoiders): Those never consuming any milk, and not belonging to group 

A, C or D. 

iii) Group C (medium intake of dairy and fish): Those in the middle quintile for dairy 

consumption (204 to 320 g per day) and quintiles 3 and 4 for fish consumption (37 to 50 

g per day) 

iv) Group D (high intake of dairy and fish): Those in the highest quintile for dairy and fish 

consumption (over 432 g and 50 g per day, respectively) 

For these individuals, energy (KJ/day), fat (g/day), proteins (g/day), cholesterol (g/day), saturated 

fats (g/day) and sodium (mg/day) were derived from the food frequency questionnaire, in addition 

to the daily intake of iodine. 

 

2.5 Thyroid function 

Thyroid stimulating hormone (TSH) and free thyroxine (free T4) were measured as described in (18). 

Briefly, analysis were carried out using a two-step immunoassay. The laboratory reference range for 

TSH was 0.2 to 4.5 mU/l, with coefficients of variability ranging from 3.0% to 3.5%, and for free T4 it 

was 9 to 21 pmol/L, with coefficients of variability ranging from 5.1% to 8.9%. 

 

2.6 Statistical analysis 

In all analyses, volumetric MRI data were standardised by head size (i.e. expressed in percentage with 

respect to the intracranial volume) and adjusted by age in days at the time of the MRI scan. To examine 

the associations between diet and cognition and brain health related indicators at older age, and the 

associations between the haematological parameters that relate to the thyroid function in waves 1 

and 2 (i.e. acquired 3 years apart), we applied robust univariate regression analysis using iteratively 

reweighted least squares with a bisquare weighting function from MATLAB R2014a Statistical Toolbox 

and an adding bootstrap, and repeated the analyses without excluding outliers (ANOVA). False 

Discovery Rate (FDR) was applied to adjust for multiple comparisons. Kruskal-Wallis and Mood’s 

Median tests were used to evaluate differences in the cognitive and imaging parameters between the 

four groups with extreme/middle levels of iodine consumption. To explore whether childhood 

intelligence was associated with dietary iodine consumption at age 72 years we used a general linear 

model with age 11 IQ as predictor and iodine (extracted from the SCG-FFQ) as the response. Gender 

at each data collection wave was used as covariate in all analyses. All our results were corroborated 

using IBM-SPSS Statistics 21. 
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3. Results 

3.1 Sample characteristics 

3.1.1 Imaging and cognition 

Valid imaging data were available for 61-64% of the participants classified according to their iodine 

consumption. As Table 1 shows, the descriptive values of the imaging variables for the subsample 

with extreme/middle iodine intake/avoidance (n=189, 87 men and 102 women) are similar to those 

from the whole sample (n=1091). The subtle inter-hemispheral differences on the hippocampal, 

cerebellar cortex and ventricular volumes in the subsample follow the same pattern of the whole 

sample: slightly more atrophy (i.e. reduced volume) in the left hemisphere compared to the right, 

but this difference was not significant (previously reported (19)). The median and distribution of the 

imaging and cognitive measures did not significantly differ between the four iodine consumption 

groups: low intake of dairy and fish (Group A, n=63), dairy avoiders (Group B, n=22), medium intake 

of dairy and fish (Group C, n=76) and high intake of dairy and fish (Group D, n=28).  

 

Table 1. Descriptive statistics of the imaging and cognitive variables in the whole sample (n=1091) and in the 

subsample with extreme/middle iodine intake/avoidance (n=189). For variables normally distributed (†), the 

mean and standard deviation (SD) are given. For not normally distributed variables, median and 

interquartile range (IQR) are given instead. 

Imaging variables 

Full Cohort (n=1091) Present Subsample (n=189) 

Valid data 

(n) 

Mean (SD)or 

Median (IQR) 

Valid data 

(n) 

Mean (SD)or 

Median (IQR) 

Brain 

ventricular 

volume (ml) 

Lateral right 

671/1091 

(62%) 

13.93 (9.30) 

117 / 189 

(62%) 

14.44 (8.46) 

Lateral left 15.26 (10.70) 15.10 (10.73) 

Third 1.74 (0.90) 1.79 (0.88) 

Fourth 0.27 (0.25) 0.30 (0.24) 

Subarachnoid space volume (ml) 
669/1091 

(61%) 
189.59 (75.25) 

117 / 189 

(62%) 
190.83 (66.28) 

Hippocampal 

volume (ml) (†) 

Right 

hippocampus 660/1091 

(60%) 

3.33 (0.46) 
117 / 189 

(62%) 

3.34 (0.68) 

Left 

hippocampus 
3.09 (0.46) 3.06 (0.56) 
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White matter hyperintensity 

volume (ml) 

678/1091 

(62%) 
7.70 (13.20) 

120 / 189 

(64%) 
6.44 (14.98) 

Cerebellar 

volume (ml) (†) 

White matter 

right 

647/1091 

(59%) 

11.36 (1.64) 

115 / 189 

(61%) 

11.51 (1.68) 

Cortex right 43.13 (4.78) 43.65 (4.95) 

White matter 

left 
11.32 (1.68) 11.44 (1.72) 

Cortex left 42.40 (4.70) 42.50 (4.88) 

Cognitive variables    

g 
856/1091 

(78%) 
0.04 (1.29) 

151/189 

(80%) 
0.07 (0.96) (†) 

g-speed 
838/1091 

(77%) 
0.11 (1.26) 

147/189 

(78%) 
0.08 (0.93) (†) 

g-memory 
840/1091 

(77%) 
0.13 (1.34) 

148/189 

(78%) 
0.03 (0.89) (†) 

Age 11 IQ (†) 
1028/1091 

(94%) 
100.00 (14.99) 

183/189 

(7%) 
102.26 (13.62) 

Note: (†) refers to normally distributed variable data 

 

3.1.2 Iodine-rich foods and iodine intake 

Total fish and dairy intake for the whole cohort is shown in Table 2. There was a broad range of intakes 

for most iodine-rich food groups, except shellfish, canned fish and fish-products (such as fish cakes 

and fish-containing pasties), which were consumed at a lower level, and avoided by a large proportion 

of the population under consideration (n=882).  

 

 

Table 2. Distribution of iodine-rich food intake in the LBC36 cohort sample (n=882) 

    Fish (g/day)   Dairy (g/day) 

 

White 
fish 

Oily 
fish 

shellfish 
fish 
pro-

ducts 

Can-
ned 
fish 

Total 
fish 

intake 

 Milk 
other 
dairy 

All 
dairy 

Complete data n=870 n=864 n=872 n=877 n=874 n=849  n=869 n=873 n=862 

Non-consumers 
(0g / day) 

n=35 n=105 n=488 n=558 n=369 n=12  n=33 n=26 n=3 

Median (g/day) 17.6 13.7 0.0 0.0 3.2 43.2  146.0 50.0 250.6 
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Percentiles 
(g/day) 

Min 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 

20th 9.6 6.5 0.0 0.0 0.0 26.0  103.7 12.2 151.2 

40th 16.1 12.4 0.0 0.0 0.0 36.9  146.0 30.9 203.9 

60th 21.7 18.8 2.6 0.0 3.2 49.9  156.2 64.8 319.7 

80th 29.7 30.0 4.9 4.9 6.3 69.0  365.0 125.0 431.6 

Max 88.2 231.3 31.6 44.4 225.0 477.3  1460.2 692.7 1550.5 

 

Iodine-rich food avoiders were a minority, with 3.8% never consuming milk, 1.4% never consuming 

fish, 1.7% consuming low amounts of fish and dairy (less than 200g fish per week, less than 200g dairy 

per day, of which less than 100g should be milk). Furthermore, 0.2% combined low dairy consumption 

with no fish at all, and 0.8% avoided both dairy and fish totally.  

In the subsample with extreme/middle iodine intake/avoidance no overlap was observed between 

the individuals (n=189) categorised under the four groups with patterns of iodine intake 

representative of a trait (Table 3).  

 

Table 3. Iodine-rich food intake of the four groups with extreme/middle iodine intake/avoidance (n=189) 

  

Group A  
Low intake of 
dairy and fish 

(n=63) 

Group B  
Dairy avoiders 

(n=22) 

Group C 
Medium intake 

of dairy and 
fish 

 (n=76) 

Group D  
High intake of 
dairy and fish 

(n=28) 

White fish  (g/day) 16.1 (11.9) 16.1 (18.8) 20.0 (9.6) 29.7 (25.4) 

Oily fish  (g/day) 6.5 (12.1) 31.8 (30.1) 18.7 (13.3) 40.2 (35.6) 

Shellfish  (g/day) 0.0 (2.5) 0.0 (5.1) 0.0 (2.6) 2.6 (5.1) 

Fish products  (g/day) 0.0 (0.0) 0.0 (5.4) 0.0 (4.9) 1.0 (6.9) 

Canned fish  (g/day) 0.0 (3.2) 3.2 (6.3) 3.2 (6.3) 6.3 (6.3) 

Total fish intake  (g/day) 25.9 (11.0) 67.3 (27.5) 48.2 (15.1) 86.2 (32.5) 

Milk  (g/day) 51.1 (83.2) 0.0 (0.0) 146.0 (10.0) 365.0 (161.3) 

Other dairy  (g/day) 8.8 (17.5) 72.7 (137.9) 104.6 (60.3) 96.6 (58.4) 

Total dairy  (g/day) 107.2 (86.3) 72.7 (137.9) 250.3 (57.9) 489.4 (146.0) 

Iodine-rich food intake was not normally distributed. Therefore, the values given are Median (IQR). Comparison of intake 

between groups, done with the Kruskall Wallis and Mood’s Median tests showed significant differences for all parameters 

(p<0.001) between groups. 

 

On this subsample, intake of iodine containing nutritional supplements was reported by 10 

participants (n=4 in group A, n=2 in group B, n=2 in group C and n=2 in group D). In general, reported 

iodine intake was sufficient (median 193 µg/day), IQR 109.3, as per the UKs recommended diary iodine 

intake(20) of 140µg/day, ranging from 61.6 µg to 524.4 µg per day.  A quarter (n=47, 24.9%) had an 

iodine intake below the reference nutrient intake for iodine (140 µg/day). The median (IQR) total 
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iodine intake µg/day was 120.0 µg/day (59.7) for Group A, 169.8 µg/day (56) for Group B, 207.4 µg/day 

(63.9) for Group C and 352.7 µg/day (128.3) for Group D.  

 

 

3.1.3 Thyroid function 

The thyroid function of euthyroid subjects (i.e. having normal thyroid gland function) are reported 

in(18), along with associations with cognition. The haematological parameters related to the thyroid 

function at old age, measured 3 years apart, were strongly and significantly associated (standardised 

β = 0.55 (TSH) and 0.51 (free T4), p<0.0001) indicating high stability of these measures over time. 

Specifically for the subsample studied, very few cases of overt hypothyroidism were reported. The 

distribution of cases of subclinical hypothyroidism did not significantly differ between the four groups. 

The median levels of TSH and T4 and distributions did not differ between groups (Table 4). 

 

Table 4: Thyroid function in the selected subsample 

 

  

Group A  
Low intake of 
dairy and fish  

(n=63) 

Group B  
Dairy avoiders 

 (n=22) 

Group C 
Medium intake 

of dairy and fish 
 (n=76) 

Group D 
High intake of 
dairy and fish 

 (n=28) 

Wave 
1 

TSH  N=63/63 N=22/22 N=72/76 N=26/28 

 
mU/L (median, 

IQR) 
1.74 (1.02–3.07) 1.70 (0.85–2.27) 1.72 (1.29-2.88) 2.04 (1.28-2.08) 

 free T4  N=63/63 N=21/22 N=72/76 N=26/28 

 
pmol/L (median, 

IQR) 
16.0 (13.0–17.0) 15.0 (15.0–17.0) 15.0 (14.0-17.0) 15.0 (14.0-17.2) 

 
Overt 

hypothyroidism 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 
Subclinical 

hypothyroidism 
6 (9.5%) 2 (9.5%) 5 (6.9%) 1 (3.8%) 

Wave 
2 

TSH  N=49/63 N=17/22 N=63/63 N=22/22 

 
mU/L (median, 

IQR) 
1.50 (1.04–2.30) 1.50 (1.15 – 2.05) 1.40 (0.97-2.30) 1.65 (1.00-1.90) 

 free T4  N=49/63 N=17/22 N=63/63 N=22/22 

 
pmol/L (median, 

IQR) 
13.0 (12.0–14.0) 13.0 (12.0-14.5) 13.0 (12.0-14.0) 12.5 (11-14.25) 

 
Overt 

hypothyroidism† 

n(%) 
0 (0%) 0 (0%) 0 (0%) 1 (3.8%) 

 
Subclinical 

hypothyroidism‡ 

n(%) 
1 (2%) 0 (0%) 2 (3.2%) 0 (0%) 

† TSH>4.5mU/L, T4<9pmol/L; ‡ TSH>4.5mU/L, T4>9pmol/L 

 

3.2 Associations between dietary sources of iodine and volumetric brain structural data 
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Table 5 shows the associations between reported dietary iodine intake (including and excluding iodine 

supplementary intake) and dietary sources of iodine and the volumetric brain structural parameters 

that can be affected by extreme iodine intake. Of the subsample studied, only the size of the brain 

lateral ventricles was positively associated with iodine intake (β=0.2, p≤0.01), indicating that the 

consumption of iodine, likely to indicate long exposure to this nutrient, mainly due to the consumption 

of dairy products (β=0.21, p=0.02) may have an influence in inner brain atrophy at older age. Results 

from the robust regression with bootstrap did not differ substantially from those presented in Table 

5. As expected, the burden of white matter damage, represented by the volume of white matter 

hyperintensities, was associated with the intake of fish products (β=0.28, p=0.002), rich in fats and 

saturated fats (see Table 6) in this subsample.  

 

3.3 Associations between general dietary variables and volumetric brain structural data 

In the subsample representative of a trait of iodine consumption, high calorie, fat, cholesterol, protein 

and sodium intake (present in dairy and fish products) were significantly associated with lateral and 

third ventricular enlargement and the percentage of white matter hyperintensity volume in ICV at old 

age (Table 6). However, after adjusting for multiple comparisons, only the associations between 

energy, fat and proteins with lateral and third ventricular enlargements remained significant. 

Interestingly, sodium intake was negatively associated with the percentage of subarachnoid space 

occupied in ICV, but this association disappeared after FDR correction. 

 

3.4 Dietary iodine and cognition  

Initial tests showed a positive association between the general cognitive factor at older age and the 

intake of dairy products excluding milk and shell fish (before excluding outliers β=0.19, p=0.02 and 

after β=0.16, p=0.01). However, the effect was no longer statistically significant following post-hoc 

adjustments for multiple comparisons. Only the association between general memory (g-memory) at 

age 72.7 years and the intake of canned fish in this subsample with extreme/medium intake of iodine 

remained significant (before excluding outliers β=0.23, p=0.005 and after β=0.2, p=0.003) (Table 5). 

Childhood intelligence did not predict iodine intake levels at old age in the whole sample (p=0.29) or 

in the reduced sample with known iodine consumption levels (p=0.32). 

 

Table 5. Results of the associations between dietary variables that relate to iodine and imaging and 

cognitive variables in the subsample with extreme/middle iodine intake/avoidance, before FDR correction. 

Given: standardised coefficient β (p-value)  
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Imaging 

variables 

(% 

volume in 

ICV) 

Iodine 

(ug/day) 

Iodine 

+ 

supple

ments 

(ug/da

y) 

Milk 

(g/day) 

Other 

dairy 

(g/day) 

All 

dairy 

(g/day) 

White 

fish 

(g/day) 

Oily 

fish 

(g/day) 

Shell 

fish 

(g/day) 

Fish 

products 

(g/day) 

Fish 

canned 

(g/day) 

Cerebellu

m WM_R 

0.04 

(0.69) 

0.04 

(0.63) 

0.02 

(0.81) 

-0.07 

(0.47) 

0.02 

(0.83) 

-0.06 

(0.48) 

0.07 

(0.44) 

-0.03 

(0.73) 

-0.02 

(0.83) 

0.08 

(0.41) 

Cerebellu

m 

Cortex_R 

0.05 

(0.62) 

0.05 

(0.59) 

-0.04 

(0.66) 

0.002 

(0.98) 

0.01 

(0.92) 

-0.03 

(0.77) 

0.03 

(0.75) 

-0.11 

(0.23) 

-0.004 

(0.96) 

0.04 

(0.66) 

Cerebellu

m WM_L 

-0.02 

(0.86) 

0.025 

(0.79) 

0.02 

(0.82) 

-0.1 

(0.29) 

-0.02 

(0.79) 

-0.11 

(0.22) 

0.02 

(0.84) 

-0.07 

(0.47) 

-0.07 

(0.47) 

-0.004 

(0.97) 

Cerebellu

m 

Cortex_L 

0.06 

(0.55) 

0.06 

(0.54) 

-0.03 

(0.74) 

-0.01 

(0.88) 

0.03 

(0.77) 

0.001 

(0.99) 

0.06 

(0.56) 

-0.11 

(0.24) 

-0.04 

(0.65) 

0.04 

(0.64) 

Lateral 

Ventricle_

R 

0.24 

(0.008)* 

0.24 

(0.01)* 

0.12 

(0.18) 

0.14 

(0.13) 

0.21 

(0.02)* 

0.04 

(0.63) 

0.16 

(0.08) 

-0.05 

(0.59) 

0.06 

(0.53) 

-0.08 

(0.37) 

Lateral 

Ventricle_

L 

0.29 

(0.002)* 

0.30 

(0.001)

** 

0.08 

(0.38) 

0.14 

(0.14) 

0.21 

(0.02)* 

0.05 

(0.56) 

0.20 

(0.03)*

† 

-0.03 

(0.73) 

0.007 

(0.94) 

-0.05 

(0.60) 

3rd 

Ventricle 

0.17 

(0.07) 

0.12 

(0.18) 

0.009 

(0.92) 

0.02 

(0.78) 

0.05 

(0.55) 

0.1 

(0.29) 

0.11 

(0.22) 

-0.11 

(0.23) 

-0.004 

(0.97) 

-0.05 

(0.60) 

4th 

Ventricle 

0.12 

(0.20) 

0.13 

(0.16) 

0.08 

(0.37) 

0.10 

(0.29) 

0.05 

(0.63) 

0.03 

(0.78) 

0.01 

(0.90) 

0.02 

(0.88) 

-0.09 

(0.32) 

-0.05 

(0.56) 

Sub- 

arachnoid 

space 

-0.07 

(0.43) 

-0.055 

(0.56) 

-0.12 

(0.19) 

-0.19 

(0.04)* 

-0.14 

(0.12) 

0.06 

(0.48) 

0.03 

(0.75) 

0.03 

(0.77) 

-0.06 

(0.5) 

-0.14 

(0.14) 

Hippo-

campus R 

-0.005 

(0.96) 

0.025 

(0.79) 

-0.04 

(0.65) 

0.06 

(0.52) 

0.03 

(0.77) 

0.07 

(0.45) 

0.008 

(0.93) 

-0.13 

(0.15) 

0.03 

(0.72) 

-0.11 

(0.26) 

Hippo-

campus L 

0.007 

(0.94) 

-0.008 

(0.94) 

0.008 

(0.93) 

0.08 

(0.42) 

0.07 

(0.47) 

0.07 

(0.47) 

0.03 

(0.77) 

-0.10 

(0.30) 

0.08 

(0.39) 

-0.04 

(0.63) 

WMH 0.12 

(0.21) 

0.09  

(0.33) 

0.07 

(0.48) 

-0.05 

(0.61) 

0.07 

(0.48) 

0.13 

(0.16) 

0.005 

(0.96) 

-0.03 

(0.73) 

0.28 

(0.002)* 

-0.06 

(0.51) 

Cognition at mean age 72.7 years 

g 0.03 

(0.74) 

0.04 

(0.65) 

0.07 

(0.37) 

0.11 

(0.18) 

0.07 

(0.41) 

-0.06 

(0.50) 

0.12 

(0.17) 

0.19 

(0.02)* 

-0.08 

(0.35) 

0.13 

(0.12) 
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g_speed -0.02 

(0.79) 

-0.04 

(0.64) 

0.07 

(0.42) 

0.05 

(0.53) 

0.01 

(0.87) 

-0.06 

(0.49) 

-0.02 

(0.84) 

0.13 

(0.13) 

0.05 

(0.58) 

0.09 

(0.30) 

g_memor

y 

0.04 

(0.63) 

0.06 

(0.47) 

0.05 

(0.59) 

0.04 

(0.60) 

0.08 

(0.34) 

-0.05 

(0.52) 

0.10 

(0.23) 

0.06 

(0.46) 

0.06 

(0.45) 

0.23 

(0.005)* 

Note: L and R refer to the Right and Left brain hemispheres respectively 

† Became non-significant when outliers were excluded (robust regression with bootstrap) 
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Table 6. Results of the robust associations between general dietary variables and imaging and cognitive 

variables in the subsample with extreme/middle iodine intake/avoidance, before FDR correction. Given: 

standardised coefficient β (p-value) 

Imaging 

variables (% 

volume in 

ICV) 

KJ Fat Proteins Cholesterol 
Saturated 

fats 
Sodium 

Cerebellum 

WM_R 
0.70 (0.45) 0.04 (0.70) 0.06 (0.49) 0.09 (0.31) 0.04 (0.66) 0.03 (0.75) 

Cerebellum 

Cortex_R 
0.15 (0.10) 0.16 (0.08) 0.09 (0.34) 0.14 (0.14) 0.17 (0.07) 0.14 (0.14) 

Cerebellum 

WM_L 
0.09 (0.32) 0.06 (0.54) 0.07 (0.42) 0.12 (0.19) 0.07 (0.48) 0.05 (0.63) 

Cerebellum 

Cortex_L 
0.13 (0.15) 0.16 (0.09) 0.08 (0.37) 0.11 (0.22) 0.17 (0.07) 0.10 (0.27) 

Lateral 

Ventricle_R 

0.32 

(<0.001)** 

0.31 

(0.001)** 

0.31 

(0.001)** 

0.26 

(0.005)* 

0.28 

(0.002)* 

0.27 

(0.003)* 

Lateral 

Ventricle_L 

0.34 

(<0.001)** 

0.32 

(0.001)** 

0.35 

(<0.001)** 

0.29 

(0.002)* 

0.24 

(0.009)* 

0.26 

(0.004)* 

3rd Ventricle 
0.26 (0.004)* 

0.21 

(0.02)* 

0.24 

(0.009)* 

0.19 

(0.04)* 
0.16 (0.09) 

0.23 

(0.01)* 

4th Ventricle 0.11 (0.23) 0.02 (0.79) 0.10 (0.29) 0.14 (0.12) 0.04 (0.64) 0.02 (0.80) 

Subarachnoid 

space 
-0.14 (0.14) 

-0.14 

(0.13) 
-0.17 (0.06) 

-0.15 

(0.11) 

-0.14 

(0.14) 

-0.19 

(0.04)* 

Hippocampus 

R 
-0.08 (0.40) 

-0.12 

(0.21) 
-0.07 (0.47) 

-0.02 

(0.81) 

-0.10 

(0.29) 

-0.06 

(0.47) 

Hippocampus 

L 
-0.08 (0.40) 

-0.10 

(0.27) 
-0.07 (0.46) 

-0.07 

(0.44) 

-0.08 

(0.37) 

-0.05 

(0.59) 

WMH 
0.17 (0.06) 

0.18 

(0.05)* 
0.20 (0.03)* 0.16 (0.07) 

0.24 

(0.009)* 

0.19 

(0.04)* 

Cognition at mean age 72.7 years  

g 
-0.08 (0.22) 

-0.11 

(0.11) 
-0.01 (0.82) 

-0.05 

(0.40) 

-0.11 

(0.10) 

-0.05 

(0.56) 
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g_speed 
-0.08 (0.28) 

-0.08 

(0.26) 
-0.06 (0.40) 

-0.09 

(0.23) 

-0.04 

(0.55) 

-0.08 

(0.33) 

g_memory 
0.04 (0.56) 

0.004 

(0.95) 
0.07 (0.34) 0.03 (0.70) 

-0.008 

(0.92) 
0.09 (0.29) 

 

 

4 Discussion 

 

Iodine intake is key for the formation of thyroid hormones, and for neurodevelopment. While the 

critical role of nutrition is becoming better understood at important developmental stages, limited 

data exist on iodine intake in the elderly(21), and much less is known regarding its impact throughout 

the lifespan. With the assumption that extreme, or very specific, consumption patterns are likely to 

remain relatively stable throughout life; that is, that dairy or fish avoiders in later life will have been 

likely to have acquired such specific dietary habits earlier in life, we identified four groups with 

contrasting intake of iodine-rich products in a well characterised large birth cohort of elderly adults. 

Contrary to our hypothesis, we did not observe any difference in cognition or brain atrophy/white 

matter damage between groups with marked differences in iodine consumption. In the small 

subsample of individuals with dietary habits suggesting a sustained trait of iodine consumption, low 

animal fat intake and, in general, a low calorie-and-salt diet were associated with preserved lateral 

brain ventricular size, indicative of reduced or absent brain atrophy. This result is confirmatory of 

those from a study on 674 non-demented older adults from a multi-ethnic cohort in Manhattan, which 

concluded that higher fish (iodine-rich, but also a source of other nutrients) and lower meat (energy 

and protein-rich) intake were the key two elements contributing to the association of the 

Mediterranean diet with less brain atrophy(22). It also confirms results from another study on 52 

individuals cognitively normal but at risk for Alzheimer’s disease (AD), which also assessed brain 

atrophy from brain MRI and found that the nutrient combination identified as “AD-protective” (i.e. 

that was associated with reduced brain atrophy) was linked to higher intake of fish and low-fat dairy 

products and lower intake of high-fat dairies, processed meat and butter(23).  

 

It is of course difficult to disentangle the absolute effect of iodine as it is one of several nutrients 

supporting brain health, in particular long chain polyunsaturated fatty acids (LC PUFA). Several fatty 

acid desaturase genotypes have been found associated with erythrocyte membrane LC PUFA levels in 

patients with mild cognitive impairment(24). On the other hand, the subsample analysed represents 
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only 21.4% of the total number of study participants that provided dietary data, not being 

representative of the whole cohort. Nevertheless, by analysing only the subsample indicative of a 

stable trait on iodine consumption, this study partly overcomes the measurement error resulting from 

self-rated dietary information known to be sub-optimally associated with iodine sufficiency. The 

cohort reported rather homogeneous, high iodine intake compared to that of younger British 

women(6), and contemporaries in Brazil(21). 

 

A key challenge is the characterisation of lifelong exposure to iodine as a nutrient, since most 

retrospective dietary assessment tools will provide insight only on the preceding few months of intake, 

like the one used in this study. To the best of our knowledge, there are only two dietary questionnaires 

focusing on iodine intake specifically, one developed in younger UK female adults(25), and the other 

in older Australian adults(26). They also provide insight on the intake only on the months preceding 

their application, rather than intake throughout life. While sea fish would have always represented a 

rich source of iodine, the same cannot be said for dairy. Dairy iodine levels have fluctuated over the 

years, depending mostly on farming practice – initially very low, levels steadily increased from the late 

1920s to the late 1990s (through cattle feeds and iodophores usage in the milking industry), before 

introduction of regulatory changes stemming the use of iodophores(27). The reported three-fold 

increase in iodine intake between 1952 and 1982, from 80ug/day to 255ug/day(27) would have been 

relevant to this cohort, making the lifelong estimation of iodine intake even more challenging. The 

time between the collection of the dietary data and the MRI scans and cognitive tests (3 years) would 

have been a limitation of the study. However, like in previous analyses on this cohort (9), strong and 

significant associations between haematological parameters measured at both waves, known to be 

related to the dietary parameters analysed (i.e. iodine intake levels in this case), were observed 

suggesting the key measures were stable over time.  

 

Lifelong cognitive abilities could potentially influence errors in dietary data, with implications for 

epidemiological methodology in diet assessment and analysis methods (28).  Childhood IQ was not 

found to predict iodine intake levels at late adulthood in this cohort. However, in a cohort of more 

than 8000 individuals(29), childhood IQ was associated with healthier dietary habits at mean age 30 

years (e.g. consumption of fruit, vegetables (cooked and raw), wholemeal bread, poultry, fish, and 

foods fried in vegetable oil), indicating that perhaps the learning and reasoning abilities captured by 

the IQ tests could be important in the successful management of individuals’ dietary behaviour(29). 

In term of iodine nutrition, a sizeable contribution to childhood IQ (which influences later life 

cognition), happens in the womb. This could not be evaluated in this population. In the subsample 
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described, most were euthyroid with very few cases of subclinical hypothyroidism. As described by 

Booth et al, thyroid function in euthyroid subjects was not associated with cognition in this group of 

older adults(18), with associations between cognition and thyroid function previously established at 

clinical level of thyroid dysfunction(30,31), and not at subclinical level(32).  

 

This study has several strengths, starting with a very well described birth cohort of elderly adults with 

detailed brain imaging volumetric measurements. Drop-outs at second wave are not thought to affect 

or bias the results of our analyses in the context of “healthy ageing”(33). Our approach focused on 

specific dietary patterns, and should be replicated in cohorts with more heterogeneous dietary 

profiles. While studying the relationship between lifelong dietary patterns, brain structure and 

cognition will remain challenging when using retrospective approaches to define the diet and lifestyle, 

there is scope to set-up well defined prospective studies following individuals through life, in order to 

draw more definitive answers. This study has found an interesting link between low iodine intake and 

inner brain atrophy, represented by large ventricular sizes – this is particularly important for studies 

of aging and AD and warrant further studies. At present, our results raise an important hypothesis 

between brain atrophy and iodine-product consumption, which ought to be better defined with a view 

to design appropriate guidelines. 
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