2,045 research outputs found

    Effect of polymerization catalyst technology on the melt processing stability of polyethylenes, Part 3: Additives blends performance

    Get PDF
    © 2014 Society of Plastics Engineers. This article considers the interaction between additives that occur during the stabilization process. The simultaneous effects of the additives and associated interactions on melt processing stability and processing discoloration were of particular interest. Melt stability is an important factor to consider because physical changes in the processed polymer can occur during the compounding and fabrication steps. Furthermore, discoloration is one of the most important problems affecting commercial polymers. Most discoloration manifests itself as yellowing, especially in the case of polyolefins. Although yellowing can often be associated with degradation processes caused by various agents, such as light or heat, this is not always the case; yellowing can also be due to the interaction of additives in the stabilizer packages. Blends of primary antioxidants (AOs), secondary AOs, and hindered amine light stabilizers have been studied with the intention of further improving stabilization performance together with cost reduction of the stabilized polymer. Although synergism between AOs and a stabilizer is fairly common, antagonism was also observed in terms of melt flow protection and in color stability in some of the AOs tested. The effects of a range of thermal and light stabilizers on the melt stability (investigated via multiple pass extrusion) and color stability of three different polyethylenes (PEs) were examined. The PEs varied in terms of the catalyst system used to synthesize the polymers and included a high-density polyethylene (HDPE) produced by using a chromium-based Phillips catalyst and two linear low-density polyethylenes (LLDPEs) produced via chromium-based metallocene and titanium-based Ziegler-Natta catalysts. The apparent lack of influence of polymerization catalyst system on the mode of stabilizer interaction should lead to the reassessment of stabilizer formulation strategies in relation to PE type/catalyst system and associated commercial/economic considerations. J. VINYL ADDIT. TECHNOL., 22:117-127, 2016

    The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2)

    Get PDF
    © 2018 Elsevier Ltd. The effect of thermal treatment on the morphology (crystalline phase and size) and photocatalytic activity of freshly prepared TiO 2 nano-powder is communicated. TiO 2 nano-powders, prepared by hydrolyzing titanium tetraisopropoxide at room temperature, were all dried at 382 K and subsequently calcined at different temperatures, for 1 h, up to 1172 K. Raman analysis of each thermally treated sample exhibited different titania phase structures. Up to 772 K a mixture of brookite and anatase phases was observed, while a mixture of all three phases, i.e. anatase, brookite and rutile, was observed at 872 K, with a rutile only phase at 1097 K and above. The photocatalytic activity of all samples was assessed by means of the photocatalytic degradation of methyl orange dye (MeO). All anatase-brookite compositions exhibited high photocatalytic activity with the rate of degradation decreasing with increasing calcination temperature, which coincides with (i) a slight increase of the anatase phase, (ii) a slight decrease of the brookite phase, and (iii) a gradual increase of the crystallite size of all phases. The greatest photocatalytic activity was observed for the sample calcined at 382 K, which contained the highest amount of brookite (in the presence of anatase as the dominant phase), while the lowest rate was observed for the pure rutile sample

    Photo-Stabilisation and UV Blocking Efficacy of Coated Macro and Nano-Rutile Titanium Dioxide Particles in Paints and Coatings

    Get PDF
    Surface treated macro and nanoparticle TiO2samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5and Na2SiO3respectively. The surface of the nano-TiO2was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3and P2O5was more successful than one based on ZrO2, Al2O3and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy

    Use of ion-assisted sputtering technique for producing photocatalytic titanium dioxide thin films: Influence of thermal treatments on structural and activity properties based on the decomposition of stearic acid

    Get PDF
    Titanium dioxide thin films were deposited by the reactive ion-assisted sputtering method from titanium targets at various partial pressures and deposition parameters. The films were deposited onto substrates at temperatures ranging from room-temperature conditions to 722 K. A selection of thin films was post-deposited annealed at temperatures up to 972 K for 10 min and characterized by micro-Raman spectroscopy and scanning electron microscopy (SEM) and subsequently analysed to assess their photocatalytic activity. Micro-Raman characterization revealed that the as-deposited films had either predominant amorphous, rutile-like structures, anatase-like structures or anatase-rutile mixed structures. The thin films deposited with a high substrate temperature and with energy assistance from the ion source tended to be amorphous, while films deposited on a hot substrate without ion energy assistance tended to have a mixed crystalline phase. On subsequent annealing the amorphous films changed to a rutile structure at temperatures above 672 K, while mixed anatase-rutile films changed to predominant rutile structures only after thermal treatments above 872 K. Thus, this study has revealed an astonishing persistence of the anatase-rutile mixed phase at very high temperatures and showed the possible existence of a key transition temperature at 672 K, where it was possible to see a transformation from amorphous or mixed phase to a rutile or dominant rutile mixed phase. Photocatalytic tests were undertaken by using a novel method consisting of observing the degradation of a film of stearic acid by the thin films under artificial UV radiation. Of the films investigated those with anatase-rutile mixed phases showed the greatest photoactivity. This work was essential in the understanding of the correlation between growth deposition conditions, phase transitions and photocatalytic activity. This set of experiments demonstrated that titania made under a highly oxidizing atmosphere, with no temperature applied on the substrate during fabrication and using an ion sputtering method, is a useful and valuable novel method for creating active TiO2thin films

    Photochemistry and photopolymerisation of substituted 2-methylanthraquinones and novel 2-acryloxymethylanthraquinone in radiation curing

    Get PDF
    © 2018 Elsevier B.V. Anthraquinones have been the subject of numerous photochemical studies and their photopolymerization activities have been examined under various conditions to improve more efficient photochemical systems. This article involves further detailed investigations into the photophysical, photochemistry and photopolymerisation properties of 4 commercial derivatives of 2-substituted anthraquinone, namely, 2-Bromomethylanthraquinone (2BA), 2 Chloromethylanthraquinone (2CA), 2 Ethylanthraquinone (2EA), 2 Hydroxymethylanthraquinone (2HA) and one novel synthesized anthraquinone, 2 Acryloxymethylanthraquinone (2AA). 2AA is synthesized from 2HA. The results from both spectroscopic and analysis studies proved the 2AA to having the ester link. Absorption spectroscopy and solvent shift data are used to characterise their spectral activity. Luminescence studies involving fluorescence and phosphorescence analysis indicates efficient intersystem crossing to triplet state and n-π* nature of the lowest excited triplet state. The polymerisation activity was studied using methyl methacrylate (MMA) and analysis of the cure rate was measured using the gravimetric method. All the compounds are shown to be highly dependent on the structure. However, the rate of polymerisation (Rp) was reduced in the presence of amine. This is consistent with other results, proving the behaviour of derivatives with n-π* configuration. Hardness tests for all compounds took place using a different formula of acrylated resin/monomer systems. The excited state characteristics of the methyl derivatives have also been examined using micro and nanosecond flash photolysis. Triplet absorption spectra of all the anthraquinone derivatives show a significant red shift in the region of 340–370 nm with increasing solvent polarity due to stabilisation of the lowest triplet state by solvent reorganization. Hydrogen atom abstraction takes place in 2 propanol, forming a semiquinone radical. In the presence of the tertiary amine, triethylamine, all anthraquinone derivatives show the formation of intermediary species related to either the exciplex or the radical ion pair. Under aerobic conditions, the first decay rate for all anthraquinone derivatives increases and showed oxygen to be a good quencher with a bimolecular rate constant of around 2 × 10 8 mol. dm −3 s −1 . Relative to benzophenone, the molar absorption coefficient, ε, and quantum yield of intersystem crossing, Φisc were calculated, and it is summarised that the value for Φisc for all compound is less than 1.00 and controls to a major extent their photochemical activities

    Chemiluminescence studies on comparison of antioxidant effectiveness on multiextruded polyethylenes

    Get PDF
    Several polyethylene resins; high density polyethylene (Ph-HDPE, Phillips metal oxide catalyst) and linear low density polyethytlenes (LLDPE, formed using Ziegler–Natta catalyst and metallocene catalyst technology, m-LLDPE) were used in order to acquire an insight in to the effect of different polymerization catalyst systems on the melt stabilization performance of single AO. Chemiluminescence (CL) and melt flow rate (MFR) were used to analyze the degradation as a function of the number of passes through a twin-screw extruder. A good correlation was obtained, and the additives resulting with the best melt flow stability in the polymer were the same as those that promote the best CL results

    Iris recognition as a biometric method after cataract surgery

    Get PDF
    BACKGROUND: Biometric methods are security technologies, which use human characteristics for personal identification. Iris recognition systems use iris textures as unique identifiers. This paper presents an analysis of the verification of iris identities after intra-ocular procedures, when individuals were enrolled before the surgery. METHODS: Fifty-five eyes from fifty-five patients had their irises enrolled before a cataract surgery was performed. They had their irises verified three times before and three times after the procedure, and the Hamming (mathematical) distance of each identification trial was determined, in a controlled ideal biometric environment. The mathematical difference between the iris code before and after the surgery was also compared to a subjective evaluation of the iris anatomy alteration by an experienced surgeon. RESULTS: A correlation between visible subjective iris texture alteration and mathematical difference was verified. We found only six cases in which the eye was no more recognizable, but these eyes were later reenrolled. The main anatomical changes that were found in the new impostor eyes are described. CONCLUSIONS: Cataract surgeries change iris textures in such a way that iris recognition systems, which perform mathematical comparisons of textural biometric features, are able to detect these changes and sometimes even discard a pre-enrolled iris considering it an impostor. In our study, re-enrollment proved to be a feasible procedure

    At what times during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR-based tests? A systematic review of individual participant data

    Get PDF
    Background: Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral ribonucleic acid (RNA) using reverse transcription polymerase chain reaction (RT-PCR) are pivotal to detecting current coronavirus disease (COVID-19) and duration of detectable virus indicating potential for infectivity. / Methods: We conducted an individual participant data (IPD) systematic review of longitudinal studies of RT-PCR test results in symptomatic SARS-CoV-2. We searched PubMed, LitCOVID, medRxiv, and COVID-19 Living Evidence databases. We assessed risk of bias using a QUADAS-2 adaptation. Outcomes were the percentage of positive test results by time and the duration of detectable virus, by anatomical sampling sites. / Results: Of 5078 studies screened, we included 32 studies with 1023 SARS-CoV-2 infected participants and 1619 test results, from − 6 to 66 days post-symptom onset and hospitalisation. The highest percentage virus detection was from nasopharyngeal sampling between 0 and 4 days post-symptom onset at 89% (95% confidence interval (CI) 83 to 93) dropping to 54% (95% CI 47 to 61) after 10 to 14 days. On average, duration of detectable virus was longer with lower respiratory tract (LRT) sampling than upper respiratory tract (URT). Duration of faecal and respiratory tract virus detection varied greatly within individual participants. In some participants, virus was still detectable at 46 days post-symptom onset. / Conclusions: RT-PCR misses detection of people with SARS-CoV-2 infection; early sampling minimises false negative diagnoses. Beyond 10 days post-symptom onset, lower RT or faecal testing may be preferred sampling sites. The included studies are open to substantial risk of bias, so the positivity rates are probably overestimated
    corecore