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Abstract 

Several polyethylene resins; high density polyethylene (Ph-HDPE, Phillips metal oxide catalyst) and 

linear low density polyethytlenes (LLDPE, formed using Ziegler-Natta catalyst and metallocene 

catalyst technology, m-LLDPE) were used in order to acquire insight in to the effect of different 

polymerization catalyst systems on the melt stabilization performance of single AO. 

Chemiluminescence (CL) and melt flow rate (MFR) were used to analyse the degradation as a function 

of the number of passes through a twin-screw extruder. A good correlation was obtained, and the 

additives resulting with the best melt flow stability in the polymer were the same as those that promote 

best CL results.  
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1. Introduction  

Most of the polymeric materials are not environmentally stable enough to with stand the conditions of 

normal use. In contact with atmospheric oxygen, they undergo oxidation reactions which lead to a 

deterioration of their properties and characteristics. Anti-oxidants are important additives used in most 

thermoplastics to protect polymers during initial melt processing, end use and recycling, since those 

additives inhibit or retard the progress of these oxidation reactions. Therefore, the evaluation of the 

stabilizer effectiveness is of prime importance in industrial polymer research. Screening of stabilized 

materials under real conditions would take a long time, so studies are carried out by means of 

accelerated tests, as using multiple pass extrusion [1,2,3,4], where the influence of zinc stearate during 

melt processing [5], type of polymerization catalyst system [6], or content of comonomers [7]on the 

degradation of polyolefines in the melt state may be studied. The stabilized polymer is subjected to 

four or more consecutive extruder passes, and the melt flow index (MFI) and yellowness index (YI) 

are the primary evaluated parameters. The stabilizers that maximize retention of performance 

properties with successive passes are considered most effective. Alternative methods to MFI 

determinations for ranking the relative stabilization effectiveness in polymers are desirable, in order to 

reduce time and material consuming comparing to MFI analysis [8]. 

The technique of chemiluminescence (CL) has proved to be a sensitive tool for the study of polymer 

degradation [9,10,11,12], and its use continues to attract much interest. It is well known [13,14], that 

the degradation of polymer is accompanied by a weak emission of light produced as direct results of a 

chemical reaction. Chemiluminescence from polymers is due to the recombination of secondary alkyl 

peroxy radicals, which promotes ketone products to its lowest triplet state and the radiative 

deactivation gives the light emission in the visible region [15,16,17,18]. The chemiluminescence 

emission can be related to the hydroperoxide (POOH) content, since generation of peroxy radicals 

depends on the peroxide concentration formed during processing or in-service life of the material under 
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ambient conditions [19].  As peroxide species are the primary oxidation intermediates of the polyolefin 

degradation, CL can be used to evaluate the degree of degradation [10], to study the reaction 

mechanisms [20] and oxidation kinetics, [21,22] or to assess the stabilization efficiency of additives 

[23,24].  

From an applied point of view, the measurement of CL intensity gives about the rate of degradation 

and the efficiency of antioxidants (AO) since the stabilizer reduces the concentration of excited ketone. 

Thus, the main goal of this work was to study the CL emission of different stabilized polyethylene in 

order to investigate the difference in the thermo-oxidative behaviour of these polymers under 

conditions of extrusion processing. For that purpose, Primary antioxidants: hindered and low hindered 

phenols, and Secondary antioxidants: phosphites and thioesthers were selected and included in Ph-

HDPE (Cr catalyst), ZN-LLDPE (Ziegler-Natta catalyst) and metallocene m-LLDPE (Zr). The CL 

emission was analysed after multi-pass extrusion and the results compared to those obtained by Melt 

Flow Rate.  

 

 

 

  



 4 

2. Experimental 

2.1. Materials. 

The polyethylene types investigated were commercially produced via three different catalyst 

technologies, (a) Phillips-type catalysts, called Ph-HDPE, supplied by Borealis, (b) Ziegler–Natta 

catalysts, called ZN-LLDPE, and (c) single site metallocene catalysts, called m-LLDPE, both supplied 

by Exxon. 

The stabilizers selected were commercially available grades, and supplied by Chemtura. Their 

corresponding structures are shown in Figure 1, together with their trade code, melting point of the 

products, molar activity and molecular weight (Table 1). For comparative use, all the products were 

tested individually at a load level of 250 ppm. All the formulations also contained 500 ppm zinc 

stearate (ZnSt) as an acid scavenger. 

Table 1 

Figure 1 

2.2. Multi-pass extrusion and film preparation. 

Polyethylenes were subjected to six extrusion passes (0-5) and samples of each pass were collected for 

further analysis. The extruder used was a Brabender single screw extruder (D=19 mm, L/D=0.44 and 

compression ratio of 4) attachment for a Brabender PL2000 dynanometer drive unit. Processing began 

with 1.2 kg of polymer for pass 0, under nitrogen atmosphere, (Set Zones Temperature: Hopper 175/ 

175/ 180/ 190 ºC Die). After passes 0, 1, 3 and 5, under air, (Set Zones Temperature: Hopper 200/ 210/ 

220/ 230ºC Die), 19 g of extrudate was collected.  

Polymer films were made by compression moulding of a fixed amount of blended powder (1g) in a 

Collin-200 press under the same temperature (190ºC) and pressure cycle (1 min. 0bar, and 1min. at 
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150 bar). Also, the cooling rate, from 190ºC until room temperature, was controlled and maintained 

constant to assure the same crystalline index in all the samples. Under such conditions, circular 

polymer films (100 m ± 10 m thick) were obtained.  

2.3. Characterization. 

The Melt Flow Rate (MFR) of material collected after extrusion passes: 0, 1, 3, 5 were determined at 

190ºC, 10 kg masses using a semiautomatic Ceast16412 and 16861 MFR instrument [25]. 

FTIR spectra were obtained using a Perkin Elmer BX-FTIR spectrometer coupled with an Attenuated 

Total Reflectance (ATR) accessory, MIRacle-ATR from PIKE Technologies. Carbonyl index (C.I.), 

defined as the ratio of carbonyl and methylene absorbances, was calculated according to the baseline 

method, as the ratio of the absorbance of the carbonyl peak at 1714 cm-1 and that of the methylene 

absorption band at 1435 cm-1 (CH2 scissoring peak) taken as an internal thickness band [26]. 

Chemiluminescence (CL) emission of film samples were obtained as described earlier [21] using a 

CL400 ChemiLUME apparatus developed by Atlas Electric Devices Co. Samples for 

chemiluminescence measurements were prepared by cutting circular specimens of 2 cm in diameter 

from the polymer films; hence the emission area was maintained constant in all the experiments. The 

polyethylene films were held in aluminium pans and isothermal tests were performed by heating the 

samples to a constant temperature of 180 ºC, and CL emission was recorded as a function of time under 

constant flow (50 ml/ min) of dry nitrogen gas. The collected data were processed using the specific 

software supplied with the instrument. 

 

3. Results and discussion 

3.1. CL analysis of the antioxidants 
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The different commercial antioxidants studied in this work were previously tested to determine the 

possible presence of hydroperoxides in the powder products supplied. Several antioxidants exhibited 

CL emission when they were heated at 180 ºC under nitrogen, confirming that a certain quantity of 

hydroperoxide was present in the products, which has been generated during their manufacturing 

process. The antioxidant chemiluminescence emissions observed are shown in Figure 2. L-CPL in 

particular shows significant CL emission, in comparison with the other ones, and this may be explained 

by its relatively complex polymeric structure. DSTDP also showed slightly higher CL emission than 

the other AOs, the CL active species are likely to exist within the long alkyl chains of their 

structures,with hydrogen atoms each able to form peroxide radicals in a thermal process. The 

remaining stabilizers, including the phenolic AOs, showed limited CL emission and this can be due to 

the aliphatic carbons present in their structures that can also give hydroperoxides but to a lesser extent. 

Figure 2 

Whilst these observations are interesting it has to be appreciated that the CL emission associated with 

the stabilizers after dilution by the PE matrix is likely to be negligible. All the formulations discussed 

in this study contain 250 ppm of AO, it can be safely assumed that the contribution of the 

hydroperoxide associated with the AO is insignificant relative to the hydroperoxide generated during 

the processing of the polymer, as it will see in the next section.  

 

3.2. AO effectiveness in Ph-HDPE determined by CL under nitrogen 

Through the measurement of the chemiluminescence intensity it is possible to obtain information about 

the rate of degradation and the efficiency of additives since the presence of antioxidant stabilizers 

reduces the rate formation of excited ketones responsible for the emission of light. Under nitrogen, the 

oxidation is inhibited and the CL emission is a measure of the peroxides present in the material formed 
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during its processing at high temperatures. As illustrative example of the curves obtained under 

nitrogen at 180 °C, for Ph-HDPE containing the antioxidants, all at 250 ppm, and after the fifth extruder 

pass, are shown in Figure 3.  

Figure 3 

In general, the intensity of chemiluminescence and the area of the emission curve decreases for those 

films containing the stabilisers when compared with the additive free polyethylene after pass 0, thus 

demonstrating their protective effect, Figure 4. In order to aid elucidation of relationships between ACL 

and the concentration of stabilization active groups in the PE, ACL (after passes 0, 3 and 5) is plotted 

against number of moles of stabilizing group per kg of PE in Figure 4 (a), (b) and (c) respectively. In 

order to visualize the performance of the different classes of AO in Ph-HDPE, they were divided into 

different groups: Primary antioxidants: hindered and low hindered phenols (◊), and Secondary 

antioxidants: phosphites and thioesthers () in Figures 4 and 5. 

Figure 4 

It is evident after pass 0 that there is a general inverse correlation between ACL and the concentration 

of stabilizing group in the PE. The low ACLvalues recorded for the phenolic AOs are related to the 

well-established CB-D mechanism which involves hydrogen atom transfer from the phenolic group to 

the peroxyl radical. The latter occurs faster than the abstraction of a hydrogen atom from the polymer 

by the radical. This reaction results in the chemical transformation of the original phenolic structure 

via a phenoxyl radical to give quinonemethides, which are the principal ultimate transformation 

products, and the regeneration of the phenolic group in subsequent steps is possible. These quinones 

can act similarly to macroalkyl radical scavengers via a chain breaking acceptor mechanism, and 

frequently they are superior to the original phenolic antioxidant in terms of trapping carbon-centered 

radicals in the polymer melt. Both mechanisms for these antioxidant additives will give rise to stable 
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products, contributing to a reduction in the concentration of R• and ROO• species and, subsequently, 

the value of ICL.  

In presence of the primary AOs (◊), except for N-431, there is some clustering of data, which exhibited 

the lowest values of ACL, with L-22IB46, Vit E and L-1790 being close to cero value. N-431 showed 

the poorest antioxidant efficiency under processing conditions, and it would be related to the higher 

level of steric hindrance of the phenolic OH group. On the other hand, the lower stabilising 

performance of the aryl phosphites is observed, whose function is as peroxide decomposer and are 

usually used in combination with chain-breaking antioxidants such as hindered phenols. The secondary 

AOs (() with the exception of A-TNPP) form a cluster higher up the ACL for primary antioxidants 

but remaining below the ACL of the unstabilized PE. 

After pass 3 and pass 5, for the unstabilised PE a drastically decrease of CL emission intensity was 

observed, which may be related according to the well-established oxidation mechanism of polyolefins, 

among the various reactions that can take place, the formation of hydroperoxides and their 

decomposition to give ketone products are involved. It was confirmed by using FTIR spectroscopy, 

the carbonyl index (CI) calculated on Ph-HDPE sample was seen to gradually increase from the pass 

0 up to pass 5 (CI = 0.6 and 1.0 respectively). Otherwise, the chemiluminescence intensity continued 

increasing after extrusion passes, and the above trend was remained largely true through the data points 

for samples containing stabilizers. 

The MFR test is a simple and convenient method for monitoring polymer degradation related to chain 

scission or crosslinking during multi-pass extrusion as MFR is inversely related to the molar mass of 

the polymer and indicative of the flow characteristics of the polymer melt. Therefore, a decrease of the 

MFR is indicative of crosslinking and is usually observed during melt processing of PH-HDPE. On 

the other hand, an increase in MFR relates to chain scission, i.e. reduction in molar mass. Therefore 

MFR can provide insight in to the overall balance of these reactions. ACL is plotted against MFR after 
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passes 0, 3 and 5 in Figure 5 (a), (b) and (c) respectively. It should be noted that after pass 0 there was 

no marked difference of MFR data between samples, Ph-HDPE exhibited slightly lower value respect 

to stabilised samples, indicating the melt stabilising efficiency of antioxidants. Figure 5 shows the 

MFR values resulting from the different AOs (at 250 ppm) after multi-pass extrusion. Clearly, it can 

be seen that MFR decreases after multi-pass extrusion in all the samples, thereby reflecting a 

dominance of degradation via crosslinking. The melt stabilization capability of the additives is best 

assessed after the fifth extruder pass, on this basis the best performance was attained by the phenolics 

afforded the best melt stabilization performance, and the phosphites predictably afforded relatively 

poor melt stabilization as did the thioesters.  

Figure 5 

Hindered phenolic AOs such as: L-CPL, L-44B25, L-22IB46, L-1790, N-431, A-PP18 and Vitamin E 

are effective in terms of enabling the polymer to avoid crosslinking as they are effective chain breaking 

donor antioxidants. These AOs compete effectively with the polymer substrate for the alkyl peroxy 

radicals; the latter is a propagation reaction resulting in the formation of further macro-alkyl radicals. 

Hindered phenolic stabilizers would therefore, be expected to lead to lower concentration of 

macroalkyl radicals and have a rate of reduced addition of macro-alkyl radicals to vinyl group relative 

to unstabilized PE. This must be responsible for the observed lowering of the extent of crosslinking 

indicated by lower MFR changes for the stabilized polymers. 

Phenolic AOs act as H-donors in order to prevent the degradation of polymers during processing. The 

activity of the Ph-OH group in terms of being an H donor depends mainly on two parameters: (a) 

Number of moles of OH groups per unit mass of AO, expressed as molar activity (mol OH/ kg of AO). 

It is expected that the higher the molar activity, the better the stabilization efficiency of the antioxidant. 

This figure affects the number of moles of Ph-OH per unit mass of PE. (b) Steric hindrance of the Ph-

OH groups (principally by substituents in the 2 and 6 positions of the phenyl ring). This aspect 
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influences the speed of reaction of the AO with radicals. It is generally expected that the lower the 

hindrance the better the stabilization efficiency of the antioxidant.  

Considering the relationship between ACL and the melt flow rate, Figure 5, it is evident that after pass 

0 the different classes of stabilizer formed clusters of data points with all the primary phenolic 

antioxidants (◊) (with the above mentioned exception of N-431) showing the lowest ACL, significantly 

below that of the unfilled matrix, and slightly higher values of MFR. The secondary antioxidants 

(phosphites and thioethers ()) formed a cluster above and slightly to the left of the primary AOs. In 

general, subsequent to multipass extrussion, a decrease in MFR was observed for all samples, 

accompanied by increase of CL emission, as it has been above mentioned (Figure 5 (b and c)). After 

pass 3, a tentative negative correlation between ACL and melt stabilization activity (as measured by 

MFR) is just beginning to become apparent, and clearly stablished after pass 5 (Figure 5c). Therefore 

crosslinking is dominant relative to chain scission. Comparing the response of the additives, it may be 

seen that primary antioxidants promote better melt flow stability than the secondary antioxidants. 

 

3.3. AO effectiveness in ZN-LLPE and m-LLDPE determined by CL under nitrogen 

The efficiency of a selection of representative primary and secondary stabilizers was evaluated in 

polyethylenes of different manufacturing histories, ZN-LLDPE and m-LLDPE. The effect of the 

number of extruder passes on ACL for these samples is shown in Figure 6 and Figure 7 respectively.  

Initially, unstabilised ZN-LLDPE and m-LLDPE samples showed lower chemiluminescence emission 

compared to Ph-HDPE. That result corroborates with the literature [27] that highlighted a relationship 

between melt flow and oxidative degradation during processing, and showed the potential importance 

of polyethylene melt flow rate on its susceptibility to oxidative degradation in melt state. Initiation of 

oxidative degradation in polymer melt mixing equipment has been attributed to the formation of free 
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radicals by mechanical breakdown of the polymer chains by shear, rather than by free radicals formed 

from hydroperoxide decomposition [28], and lower melt flow rate grades of polyethylenes showed 

higher initial rates of melt oxidation.  

On the other hand, it is significant that the m-LLDPE exhibited the lowest initial chemiluminescence 

emission, which may be attributed to their minimal unsaturation content and low metal ion catalyst 

residue [29]. Catalyst residues such as transition metals (e.g. cromium) and acidic impurities are 

believed to catalyse peroxide decomposition and therefore accelerate autooxidation. The observed 

trend would be in good agreement to the literature, which states that Phillips type PE contain a large 

amount of vinyl unsaturation [30]. In a previous paper [31], the thermal and photooxidative stability 

of high, linear low and metallocene grade polyethylene was studied, and the thermal degradation of 

polyethylenes was found to be influenced by the concentration and nature of different vinyl types. The 

metallocene polymer exhibited the lowest initial concentration of oxidised products associated with a 

low oxidation level during the manufacturing process, and showed the lowest CL intensity for initial 

sample. For HDPE, higher initial concentration of vinyl groups compared to LLDPE and m-PE was 

found, and that polyethylene resulted to be more susceptible to oxidation, than LLDPE and m-PE. 

As it was described for HDPE in previous section, it is evident that after pass 0 all the stabilizers 

significantly reduce the intensity of the CL emission in comparison of unstabilised ZN-LLDPE and m-

LLDPE. The phenolic AOs promoted the most significant reduction as they are likely to be most 

effective in terms of interruption of the oxidation cycle. After extruder passes 3 and 5, the CL emission 

from the unstabilized ZN-LLDPE, decreased due to decomposition of the hydroperoxides to give 

ketone products. However, CL emission from the stabilized samples increased after passes 3 and 5; 

and consequently all samples containing the stabilizers exhibited higher CL emission than the 

unstabilized polymer. It may be argued that the increase in CL emission (in some cases to similar levels 

as the unstabilized polymer after pass 0) observed with the stabilized samples may be due to 
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progressive depletion of the stabilizer during passes 3 and 5, such depletion will enable the processes 

observed in the unstabilized sample after pass 0 to continue unabated. 

Figure 6 

Figure 7 

The effect of degree of melt processing on CL emission for the metallocene polymer is shown in Figure 

7. Here, the unstabilized m-LLDPE showed a low CL emission after pass 0, and increased after pass 3 

then decreased slightly after pass 5. All the stabilizers give a progressive increase in ACL with 

increasing extruder passes, and after pass 5 all the stabilizers apart from L-CPL resulted in higher ACL 

than the unfilled matrix. 

The ACL versus MFR correlation for ZN-LLDPE and m-LLDPE samples after the fifth extruder pass 

are plotted in Figure 8 and Figure 9 respectively. In general, subsequent to multipass extrussion, a 

decrease in MFR was observed for all samples, accompanied by increase of CL emission, as it has 

been observed for Ph-HDPE. Therefore crosslinking is dominant relative to chain scission. Comparing 

the response of the additives, it may be seen that primary antioxidants promote better melt flow stability 

than the secondary antioxidants, showing that L-CPL and APP18 gave the best melt stability which 

went hand in hand with low ACL.  

Figure 8 

Figure 9 
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4. Conclusions 

The thermal stabilizing efficiency of a range of different AOs was determined in different 

polyethylenes after multipass extrusion by using Chemiluminescence analysis. For Ph-HDPE, the CL 

intensity decreased for those films containing the stabilisers when compared with the additive free 

polyethylene after pass 0, and a general inverse correlation between ACL and the concentration of 

stabilizing group in the PE was found. After multipass extrussion, for the unstabilised PE a drastically 

decrease of CL emission intensity was observed, which may be related to the formation of 

hydroperoxides and their decomposition to give ketone products are involved. Otherwise, the CL 

emission continued increasing after extrusion passes for samples containing stabilizers, and a good 

correlation was obtained with the MFR data relative to melt stabilization. The additives resulting in 

the lowest hydroperoxide content in the polymer were the same as those that promote high melt 

stability, confirming the role of hydroperoxide functionality and its stability in the oxidative process. 

A comparative study was stablished with polyethylenes of different manufacturing histories, ZN-

LLDPE and m-LLDPE. The results showed the importance of polyethylene melt flow rate on its 

susceptibility to oxidative degradation in melt state, related to the formation of free radicals by 

mechanical breakdown of the polymer chains by shear. Otherwise, the thermal degradation of 

polyethylenes may be influenced by the concentration and nature of different vinyl types and metal 

ion catalyst residue. 

For stabilised polymers, almost the same ranking of the effectiveness was observed for antioxidants 

included on ZN-LLDPE and m-LLDPE samples respect to Ph-HDPE. It can be concluded that CL is 

a useful method as alternative for significantly increasing the speed of evaluating processing stabilizer 

effectiveness.  
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Tables 

Table 1. Antioxidants used in this work. 

 

Type of AO 

 
Trade name 

Melting Range 

(ºC) 

Molar Activity 

 (mol active 

group/ kg AO) 

Molecular Weight 

Hindered phenols 

Anox PP18 

(A-PP18) 
49-53 1.9 531 

Naugard 431 

(N-431) 
liquid 3.17 315 

Low hindered 

phenols 

Lowinox CPL 

(L-CPL) 
>105 4.3 700-800 

Lowinox 1790 

(L-1790) 
159-162 4.3 700 

Lowinox 22IB46 

(L-22IB46) 
127-129 6.7 298 

Lowinox 44B25 

(L-44B25) 
208-210 5.2 383 

Vitamine E 

(Vit E) 
Liquid 2.3 431 

High performance 

phosphites 

Ultranox 626 

(U-626) 
170-180 3.31 604 

Ultranox 641 

(U-641) 
84-103 2.2 450 

Phosphites 

Alkanox TNPP 

(A-TNPP) 
Liquid                    4.36 688 

DVS 005 

(DVS005) 
- 5 - 

Thioesther 

Naugard DLTDP 

(DLTDP) 
39-41 1.94 514 

Naugard DSTDP 

(DSTDP) 
67 1.46 683 
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Figure 1. Structures of the antioxidants used in this work 
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Figure 2. CL curves for the antioxidants in powder bulk from obtained at 180 ºC under nitrogen after 

pass 5.  DLTDP,  L-CPL, ▼A-PP18, ▲L-1790,  DSTDP,  ●L-22IB46,  U-626,  U-641, + 

L-44B25. 
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Figure 3. CL curves versus time at 180 ºC under nitrogen for free and stabilized (250 ppm) Ph-HDPE 

films after pass 5 (a) primary AOs (b)  secondary AOs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

40

80

120

160

200

C
L

 I
n
te

n
si

ty
 (

I C
L
) 

(m
V

)

0 1.0 2.0 3.0

Time (10-3 seconds)

Unstab

N-431

A-PP18

L-CPL

L-44B25

L-1790

L-22IB46

Vit E

1.0 2.0 3.0

Time (10-3 seconds)

0

100

200

300

400

0

Unstab

A-TNPP

U-641

DSTDP

U-626

DLTDP

DVS005

C
L

 I
n
te

n
si

ty
 (

I C
L
) 

(m
V

)

(a) (b)



 21 

                                                                                                                                                                    

Figure 4. ACL (after passes 0,3 and 5) plotted against number of moles of stabilizing group per kg for 

Ph-HDPE films. 
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Figure 5. ACL (after passes 0,3 and 5) plotted against MFR for Ph-HDPE films 
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Figure 6. ACL (after passes 0,3 and 5) at 180 ºC under nitrogen for free and stabilized, ZN-LLDPE 

films. 
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Figure 7. ACL (after passes 0,3 and 5) at 180 ºC under nitrogen for free and stabilized, m-LLDPE 

films. 
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Figure 8. ACL versus MFR correlation plot for samples after the fifth, for ZN-LLDPE films. 
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Figure 9. ACL versus MFR correlation plot for samples after the fifth extruder, for m-LLDPE films.  
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