1,394 research outputs found

    High-Efficiency Control Systems for Connected Class 8 Trucks

    Get PDF
    The Department of Energy–sponsored project Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles (NEXTCAR) aims to develop technologies that utilize emerging connectivity infrastructure. A Purdue University–led team of industry leaders, along with the National Renewable Energy Laboratory, is focusing on technologies that benefit line-haul Class 8 trucks, with an emphasis on platooning vehicles. The goal is an integrated, connectivity-enabled vehicle and powertrain control system for diesel-powered on-highway trucks. Join us for a discussion

    Exploration of potential objective and subjective daily indicators of sleep health in normal sleepers

    Get PDF
    Purpose: While the concept of "sleep health" has only recently been defined, how it relates to both subjective and objective sleep parameters is yet to be determined. The current study aimed to identify potential indicators of poorer sleep health, from subjective and objective daily sleep characteristics, in normal sleepers. Participants and methods: Eighty-three individuals aged 18-65 years with no history of sleep disorders, chronic physical or psychiatric illnesses, or substance misuse were recruited from the North of England. Secondary analysis of a series of standardized studies, which included psychometrics, actigraphy, and an in-lab polysomnography (PSG) component, was undertaken. Questions from several psychometric sleep scales were combined to create an aggregate measure of sleep health status. Subjective sleep continuity was assessed by 2-week sleep diary. Objective measures comprised two continuous weeks of actigraphy and two nights of in-lab PSG. Results: Significant negative correlations were evident between sleep health scores and both diary-derived subjective sleep latency (SL; diary) and actigraphy-derived SL (actigraphy). This was reflected by independent samples t-test between high and low sleep health groups. No relationships between sleep health and PSG parameters were observed. Regression analyses indicated sleep latencies from both the sleep diary and actigraphy as significant predictors, explaining 28.2% of the variance in sleep health. Conclusion: Perceived increases in SL appear to be a primary indicator of declining sleep health in normal sleepers. The majority of objective sleep parameters, including gross PSG sleep parameters, appear not to be sensitive to sleep health status in normal sleepers. Future research is needed to understand the physical and psychological correlates of sleep health in larger samples

    Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7300–7315, doi:10.1002/2015JC011093.Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10–30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ∼70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.Funded by Gulf of Mexico Research Initiative2016-05-0

    Seeing the way: visual sociology and the distance runner's perspective

    Get PDF
    Employing visual and autoethnographic data from a two‐year research project on distance runners, this article seeks to examine the activity of seeing in relation to the activity of distance running. One of its methodological aims is to develop the linkage between visual and autoethnographic data in combining an observation‐based narrative and sociological analysis with photographs. This combination aims to convey to the reader not only some of the specific subcultural knowledge and particular ways of seeing, but also something of the runner's embodied feelings and experience of momentum en route. Via the combination of narrative and photographs we seek a more effective way of communicating just how distance runners see and experience their training terrain. The importance of subjecting mundane everyday practices to detailed sociological analysis has been highlighted by many sociologists, including those of an ethnomethodological perspective. Indeed, without the competence of social actors in accomplishing these mundane, routine understandings and practices, it is argued, there would in fact be no social order

    Elevated fibroblast growth factor signaling is critical for the pathogenesis of the dwarfism in Evc2/Limbin mutant mice

    Get PDF
    Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome

    Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar

    Get PDF
    Primary funding for the SOCAL-BRS project was initially provided by the U.S. Navy’s Chief of Naval Operations Environmental Readiness Division and subsequently by the U.S. Navy's Living Marine Resources Program.This study measured the degree of behavioral responses in blue whales (Balaenoptera musculus) to controlled noise exposure off the southern California coast. High-resolution movement and passive acoustic data were obtained from non-invasive archival tags (n=42) whereas surface positions were obtained with visual focal follows. Controlled exposure experiments (CEEs) were used to obtain direct behavioral measurements before, during and after simulated and operational military mid-frequency active sonar (MFAS), pseudorandom noise (PRN) and controls (no noise exposure). For a subset of deep-feeding animals (n=21), active acoustic measurements of prey were obtained and used as contextual covariates in response analyses. To investigate potential behavioral changes within individuals as a function of controlled noise exposure conditions, two parallel analyses of time-series data for selected behavioral parameters (e.g. diving, horizontal movement and feeding) were conducted. This included expert scoring of responses according to a specified behavioral severity rating paradigm and quantitative change-point analyses using Mahalanobis distance statistics. Both methods identified clear changes in some conditions. More than 50% of blue whales in deep-feeding states responded during CEEs, whereas no changes in behavior were identified in shallow-feeding blue whales. Overall, responses were generally brief, of low to moderate severity, and highly dependent on exposure context such as behavioral state, source-to-whale horizontal range and prey availability. Response probability did not follow a simple exposure–response model based on received exposure level. These results, in combination with additional analytical methods to investigate different aspects of potential responses within and among individuals, provide a comprehensive evaluation of how free-ranging blue whales responded to mid-frequency military sonar.PostprintPeer reviewe

    Developmental and metabolic plasticity of white-skinned grape berries in response to <i>Botrytis cinerea</i> during noble rot

    Get PDF
    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines.Facultad de Ciencias Agrarias y Forestale

    An expert-based system to predict population survival rate from health data

    Get PDF
    This work was supported by the Office of Naval Research Marine Mammal Biology Program [grant number N00014-17-1-2868].Timely detection and understanding of causes for population decline are essential for effective wildlife management and conservation. Assessing trends in population size has been the standard approach but we propose that monitoring population health could prove more effective. We collated data from seven bottlenose dolphin (Tursiops truncatus) populations in southeastern U.S. to develop the Veterinary Expert System for Outcome Prediction (VESOP), which estimates survival probability using a suite of health measures identified by experts as indices for inflammatory, metabolic, pulmonary, and neuroendocrine systems. VESOP was implemented using logistic regression within a Bayesian analysis framework, and parameters were fit using records from five of the sites that had a robust stranding network and frequent photographic identification (photo-ID) surveys to document definitive survival outcomes. We also conducted capture-mark-recapture (CMR) analyses of photo-ID data to obtain separate estimates of population survival rates for comparison with VESOP survival estimates. VESOP analyses found multiple measures of health, particularly markers of inflammation, were predictive of 1- and 2-year individual survival. The highest mortality risk one year following health assessment related to low alkaline phosphatase, with an odds ratio of 10.2 (95% CI 3.41-26.8), while 2-year mortality was most influenced by elevated globulin (9.60; 95% CI 3.88-22.4); both are markers of inflammation. The VESOP model predicted population-level survival rates that correlated with estimated survival rates from CMR analyses for the same populations (1-year Pearson's r = 0.99; p = 1.52e-05, 2-year r = 0.94; p = 0.001). While our proposed approach will not detect acute mortality threats that are largely independent of animal health, such as harmful algal blooms, it is applicable for detecting chronic health conditions that increase mortality risk. Random sampling of the population is important and advancement in remote sampling methods could facilitate more random selection of subjects, obtainment of larger sample sizes, and extension of the approach to other wildlife species.Publisher PDFPeer reviewe
    corecore