10 research outputs found

    Recent advances in organic synthesis using light-mediated n-heterocyclic carbene catalysis

    Full text link
    The combination of photocatalysis with other ground state catalytic systems have attracted much attention recently due to the enormous synthetic potential offered by a dual activation mode. The use of N-heterocyclic carbene (NHC) as organocatalysts emerged as an important synthetic tool. Its ability to harness umpolung reactivity by the formation of the Breslow intermediate has been employed in the synthesis of thousands of biologically important compounds. However, the available coupling partners are relatively restricted, and its combination with other catalytic systems might improve its synthetic versatility. Thus, merging photoredox and N-heterocyclic carbene (NHC) catalysis has emerged recently as a powerful strategy to develop new transformations and give access to a whole new branch of synthetic possibilities. This review compiles the NHC catalyzed methods mediated by light, either in the presence or absence of an external photocatalyst, that have been described so far, and aims to give an accurate overview of the potential of this activation modeL.M. acknowledges the Autonomous Community of Madrid (CAM) for the financial support (PEJD-2019-PRE/AMB-16640 and SI1/PJI/ 2019-00237) and for an “Atracción de Talento Investigador” contract (2017-T2/AMB-5037

    Six transiting planets and a chain of Laplace resonances in TOI-178

    Get PDF

    VizieR Online Data Catalog: TOI-178 six transiting planets (Leleu+, 2021)

    No full text
    Raw and detrended data from CHEOPS, NGTS, SPECULOOS and TESS; raw data from ESPRESSO. (15 data files)

    VizieR Online Data Catalog: TOI-178 six transiting planets (Leleu+, 2021)

    No full text
    Raw and detrended data from CHEOPS, NGTS, SPECULOOS and TESS; raw data from ESPRESSO. (15 data files)

    Six transiting planets and a chain of Laplace resonances in TOI-178

    No full text
    Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152-0.070+0.073to 2.87-0.13+0.14Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02-0.23+0.28to 0.177-0.061+0.055times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.</p

    VizieR Online Data Catalog: TOI-178 six transiting planets (Leleu+, 2021)

    No full text
    Raw and detrended data from CHEOPS, NGTS, SPECULOOS and TESS; raw data from ESPRESSO. (15 data files)

    Six transiting planets and a chain of Laplace resonances in TOI-178

    Get PDF
    Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at a 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152(-0.070/+0.073) to 2.87(-0.13/+0.14) Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02(+0.28/-0.23) to 0.177(+0.055/-0.061) times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes

    A Field Guide to Foldamers

    No full text
    corecore