4,513 research outputs found

    Quasi-molecular lines in Lyman wings of cool DA white dwarfs; Application to FUSE observations of G231-40

    Full text link
    We present new theoretical calculations of the total line profiles of Lyman alpha and Lyman beta which include perturbations by both neutral hydrogen AND protons and all possible quasi-molecular states of H_2 and H_2^+. They are used to improve theoretical modeling of synthetic spectra for cool DA white dwarfs. We compare them with FUSE observation of G231-40. The appearance of the line wings between Lyman alpha and Lyman beta is shown to be sensitive to the relative abundance of hydrogen ions and neutral atoms, and thereby to provide a temperature diagnostic for stellar atmospheres and laboratory plasmas.Comment: 6 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    A high resolution spectral atlas of brown dwarfs

    Full text link
    We present a UVES/VLT high resolution atlas of three L dwarfs and one T dwarf system, spectral classes at which most of the objects are brown dwarfs. Our atlas covers the optical region from Hα\alpha up to the near infrared at 1 μ\mum. We present spectral details of ultra-cool atmospheres at very high resolution (R33000R \sim 33 000) and compare the spectra to model calculations. Our comparison shows that molecular features from VO and CaH, and atomic features from Cs and Rb are reasonably well fit by current models. On the other hand, features due to TiO, CrH, and water, and atomic Na and K reveal large discrepancies between model calculations and our observations.Comment: 17 pages, 11 figures, accepted by A&A, reduced figure quality for arXi

    New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit

    Full text link
    We present new models for low-mass stars down to the hydrogen-burning limit that consistently couple atmosphere and interior structures, thereby superseding the widely used BCAH98 models. The new models include updated molecular linelists and solar abundances, as well as atmospheric convection parameters calibrated on 2D/3D radiative hydrodynamics simulations. Comparison of these models with observations in various colour-magnitude diagrams for various ages shows significant improvement over previous generations of models. The new models can solve flaws that are present in the previous ones, such as the prediction of optical colours that are too blue compared to M dwarf observations. They can also reproduce the four components of the young quadruple system LkCa 3 in a colour-magnitude diagram with one single isochrone, in contrast to any presently existing model. In this paper we also highlight the need for consistency when comparing models and observations, with the necessity of using evolutionary models and colours based on the same atmospheric structures.Comment: 7 pages, 8 figures, Astronomy & Astrophysics in pres

    Numerical simulations of surface convection in a late M-dwarf

    Get PDF
    Based on detailed 2D and 3D numerical radiation-hydrodynamics (RHD) simulations of time-dependent compressible convection, we have studied the dynamics and thermal structure of the convective surface layers of a prototypical late-type M-dwarf (Teff~2800K log(g)=5.0, solar chemical composition). The RHD models predict stellar granulation qualitatively similar to the familiar solar pattern. Quantitatively, the granular cells show a convective turn-over time scale of ~100s, and a horizontal scale of 80km; the relative intensity contrast of the granular pattern amounts to 1.1%, and root-mean-square vertical velocities reach 240m/s at maximum. Deviations from radiative equilibrium in the higher, formally convectively stable atmospheric layers are found to be insignificant allowing a reliable modeling of the atmosphere with 1D standard model atmospheres. A mixing-length parameter of alpha=2.1 provides the best representation of the average thermal structure of the RHD model atmosphere while alternative values are found when fitting the asymptotic entropy encountered in deeper layers of the stellar envelope alpha=1.5, or when matching the vertical velocity field alpha=3.5. The close correspondence between RHD and standard model atmospheres implies that presently existing discrepancies between observed and predicted stellar colors in the M-dwarf regime cannot be traced back to an inadequate treatment of convection in the 1D standard models. The RHD models predict a modest extension of the convectively mixed region beyond the formal Schwarzschild stability boundary which provides hints for the distribution of dust grains in cooler (brown dwarf) atmospheres.Comment: 19 pages, 16 figures, accepted for publication in A&
    corecore