369 research outputs found

    Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays

    Get PDF
    High-density oligonucleotide arrays can be used to rapidly examine large amounts of DNA sequence in a high throughput manner. An array designed to determine the specific nucleotide sequence of 705 bp of the rpoB gene of Mycobacterium tuberculosis accurately detected rifampin resistance associated with mutations of 44 clinical isolates of M. tuberculosis. The nucleotide sequence diversity in 121 Mycobacterial isolates (comprised of 10 species) was examined by both conventional dideoxynucleotide sequencing of the rpoB and 165 genes and by analysis of the rpoB oligonucleotide array hybridization patterns. Species identification for each of the isolates was similar irrespective of whether 16S sequence, rpoB sequence, or the pattern of rpoB hybridization was used. However, for several species, the number of alleles in the 16S and rpoB gene sequences provided discordant estimates of the genetic diversity within a species. In addition to confirming the array's intended utility for sequencing the region of M. tuberculosis that confers rifampin resistance, this work demonstrates that this array can identify the species of nontuberculous Mycobacteria. This demonstrates the general point that DNA microarrays that sequence important genomic regions (such as drug resistance or pathogenicity islands) can simultaneously identify species and provide some insight into the organism's population structure

    Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    Get PDF
    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings

    Transmission phenotype of mycobacterium tuberculosis strains is mechanistically linked to induction of distinct pulmonary pathology

    Get PDF
    In a study of household contacts (HHC), households were categorized into High (HT) and Low (LT) transmission groups based on the proportion of HHC with a positive tuberculin skin test. The Mycobacterium tuberculosis (Mtb) strains from HT and LT index cases of the households were designated Mtb-HT and Mtb-LT, respectively. We found that C3HeB/FeJ mice infected with Mtb-LT strains exhibited significantly higher bacterial burden compared to Mtb-HT strains and also developed diffused inflammatory lung pathology. In stark contrast, a significant number of mice infected with Mtb-HT strains developed caseating granulomas, a lesion type with high potential to cavitate. None of the Mtb-HT infected animals developed diffused inflammatory lung pathology. A link was observed between increased in vitro replication of Mtb-LT strains and their ability to induce significantly high lipid droplet formation in macrophages. These results support that distinct early interactions of Mtb-HT and Mtb-LT strains with macrophages and subsequent differential trajectories in pathological disease may be the mechanism underlying their transmission potential.publishersversionpublishe

    Xpert MTB/RIF Assay Shows Faster Clearance of Mycobacterium tuberculosis DNA with Higher Levels of Rifapentine Exposure.

    Get PDF
    The Xpert MTB/RIF assay is both sensitive and specific as a diagnostic test. Xpert also reports quantitative output in cycle threshold (CT) values, which may provide a dynamic measure of sputum bacillary burden when used longitudinally. We evaluated the relationship between Xpert CT trajectory and drug exposure during tuberculosis (TB) treatment to assess the potential utility of Xpert CT for treatment monitoring. We obtained serial sputum samples from patients with smear-positive pulmonary TB who were consecutively enrolled at 10 international clinical trial sites participating in study 29X, a CDC-sponsored Tuberculosis Trials Consortium study evaluating the tolerability, safety, and antimicrobial activity of rifapentine at daily doses of up to 20 mg/kg of body weight. Xpert was performed at weeks 0, 2, 4, 6, 8, and 12. Longitudinal CT data were modeled using a nonlinear mixed effects model in relation to rifapentine exposure (area under the concentration-time curve [AUC]). The rate of change of CT was higher in subjects receiving rifapentine than in subjects receiving standard-dose rifampin. Moreover, rifapentine exposure, but not assigned dose, was significantly associated with rate of change in CT (P = 0.02). The estimated increase in CT slope for every additional 100 μg · h/ml of rifapentine drug exposure (as measured by AUC) was 0.11 CT/week (95% confidence interval [CI], 0.05 to 0.17). Increasing rifapentine exposure is associated with a higher rate of change of Xpert CT, indicating faster clearance of Mycobacterium tuberculosis DNA. These data suggest that the quantitative outputs of the Xpert MTB/RIF assay may be useful as a dynamic measure of TB treatment response

    Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial

    Get PDF
    Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832

    Transmission of Mycobacterium tuberculosis in a Rural Community, Arkansas, 1945–2000

    Get PDF
    A cluster of tuberculosis cases in a rural community in Arkansas persisted from 1991 to 1999. The cluster had 13 members, 11 linked epidemiologically. Old records identified 24 additional patients for 40 linked case-patients during a 54-year period. Residents of this neighborhood represent a population at high risk who should be considered for tuberculin testing and treatment for latent tuberculosis infection

    A Geographically-Restricted but Prevalent Mycobacterium tuberculosis Strain Identified in the West Midlands Region of the UK between 1995 and 2008

    Get PDF
    Background: We describe the identification of, and risk factors for, the single most prevalent Mycobacterium tuberculosis strain in the West Midlands region of the UK.Methodology/Principal Findings: Prospective 15-locus MIRU-VNTR genotyping of all M. tuberculosis isolates in the West Midlands between 2004 and 2008 was undertaken. Two retrospective epidemiological investigations were also undertaken using univariable and multivariable logistic regression analysis. The first study of all TB patients in the West Midlands between 2004 and 2008 identified a single prevalent strain in each of the study years (total 155/3,056 (5%) isolates). This prevalent MIRU-VNTR profile (32333 2432515314 434443183) remained clustered after typing with an additional 9-loci MIRU-VNTR and spoligotyping. The majority of these patients (122/155, 79%) resided in three major cities located within a 40 km radius. From the apparent geographical restriction, we have named this the "Mercian" strain. A multivariate analysis of all TB patients in the West Midlands identified that infection with a Mercian strain was significantly associated with being UK-born (OR = 9.03, 95% CI = 4.56-17.87, p 65 years old (OR = 0.25, 95% CI = 0.09-0.67, p < 0.01). A second more detailed investigation analyzed a cohort of 82 patients resident in Wolverhampton between 2003 and 2006. A significant association with being born in the UK remained after a multivariate analysis (OR = 9.68, 95% CI = 2.00-46.78, p < 0.01) and excess alcohol intake and cannabis use (OR = 6.26, 95% CI = 1.45-27.02, p = .01) were observed as social risk factors for infection.Conclusions/Significance: The continued consistent presence of the Mercian strain suggests ongoing community transmission. Whilst significant associations have been found, there may be other common risk factors yet to be identified. Future investigations should focus on targeting the relevant risk groups and elucidating the biological factors that mediate continued transmission of this strain

    Performance of the G4 Xpert(R) MTB/RIF assay for the detection of Mycobacterium tuberculosis and rifampin resistance: a retrospective case-control study of analytical and clinical samples from high- and low-tuberculosis prevalence settings

    Get PDF
    BACKGROUND: The Xpert(R) MTB/RIF (Xpert) assay is a rapid PCR-based assay for the detection of Mycobacterium tuberculosis complex DNA (MTBc) and mutations associated with rifampin resistance (RIF). An updated version introduced in 2011, the G4 Xpert, included modifications to probe B and updated analytic software. METHODS: An analytical study was performed to assess Xpert detection of mutations associated with rifampin resistance in rifampin-susceptible and -resistant isolates. A clinical study was performed in which specimens from US and non-US persons suspected of tuberculosis (TB) were tested to determine Xpert performance characteristics. All specimens underwent smear microscopy, mycobacterial culture, conventional drug-susceptibility testing and Xpert testing; DNA from isolates with discordant rifampin resistance results was sequenced. RESULTS: Among 191 laboratory-prepared isolates in the analytical study, Xpert sensitivity for detection of rifampin resistance associated mutations was 97.7% and specificity was 90.8%, which increased to 99.0% after DNA sequencing analysis of the discordant samples. Of the 1,096 subjects in the four clinical studies, 49% were from the US. Overall, Xpert detected MTBc in 439 of 468 culture-positive specimens for a sensitivity of 93.8% (95% confidence interval [CI]: 91.2%-95.7%) and did not detect MTBc in 620 of 628 culture-negative specimens for a specificity of 98.7% (95% CI: 97.5%-99.4%). Sensitivity was 99.7% among smear-positive cases, and 76.1% among smear-negative cases. Non-determinate MTBc detection and false-positive RIF resistance results were low (1.2 and 0.9%, respectively). CONCLUSIONS: The updated Xpert assay retained the high sensitivity and specificity of the previous assay versions and demonstrated low rates of non-determinate and RIF resistance false positive results
    corecore