13 research outputs found

    Volumes of Compact Manifolds

    Get PDF
    We present a systematic calculation of the volumes of compact manifolds which appear in physics: spheres, projective spaces, group manifolds and generalized flag manifolds. In each case we state what we believe is the most natural scale or normalization of the manifold, that is, the generalization of the unit radius condition for spheres. For this aim we first describe the manifold with some parameters, set up a metric, which induces a volume element, and perform the integration for the adequate range of the parameters; in most cases our manifolds will be either spheres or (twisted) products of spheres, or quotients of spheres (homogeneous spaces). Our results should be useful in several physical instances, as instanton calculations, propagators in curved spaces, sigma models, geometric scattering in homogeneous manifolds, density matrices for entangled states, etc. Some flag manifolds have also appeared recently as exceptional holonomy manifolds; the volumes of compact Einstein manifolds appear in String theory.Comment: 26 pages, no figures; updated addresses and bibliography. To be published in Rep. Math. Phy

    A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers

    No full text
    We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a ‘consumer-resource library’ of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for ή13C and ή15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.peerReviewe

    A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers

    Get PDF
    <div><p>We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a ‘consumer-resource library’ of FA signatures of <i>Daphnia</i> fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical <i>Daphnia</i> comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for ή<sup>13</sup>C and ή<sup>15</sup>N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.</p></div

    Non-metric multi-dimensional scaling (NMDS) plots of the FA profiles used (n = 26 FA; Euclidean distance).

    No full text
    <p>One outlier cryptophyte profile is removed from the NMDS plots for clarity, but this outlier was included in the FA-based analyses. A) Algal diets (filled symbols) and <i>Daphnia</i> fed those diets (open symbols) and associated resource polygons for each treatment group (stress = 0.09). B) The real <i>Daphnia</i> in the ‘consumer-resource library’ (no algal diets), with 100 ‘pseudo-<i>Daphnia</i>’ used in the analyses (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0129723#sec002" target="_blank">Methods</a>; stress = 0.07).</p

    The results of an analysis where three potential food resources were either set to 100% of the food consumed or 0% (<i>e</i>.<i>g</i>., 100% diatoms, 0% green algae, and 0% cyanobacteria).

    No full text
    <p>This resulted in 9 outputs for the three SI based analyses (red). Because the outputs for the three SI cases where the subsidy should have been 100% were very similar, as was also true for the six cases where the subsidy should have been 0%, the three 100% responses and the six 0% responses were aggregated in this plot. For the FA based analyses (blue), we simply analyzed the original 10 cases where <i>Daphnia</i> consumed diatom monocultures. We also analyzed the 8 cases where the <i>Daphnia</i> consumed green algae monocultures as well as the 8 cases where they consumed cryptophyte monocultures. In these 26 cases, the correct answer was always obtained to multiple decimal places. The curves represent the 1/10<sup>th</sup> percentile (n = 1000) density distribution of the model posterior densities grouped into 40 bins.</p
    corecore