191 research outputs found
Un graffiti con versos del Vizconde de Altamira en la pared del Castell de Alaquàs (c. 1550)
Cuando se realizan las labores de rehabilitación del Castell de Alaquàs (Valencia), entre 2003 y 2006, los arqueólogos logran sacar a la luz una serie de graffiti antiguos de sus paredes, entre los que destacan diez versos escritos hacia 1550, que corresponderían a una décima del Diálogo ¿entre el Sentimiento y el Conocimiento¿ del II Vizconde de Altamira, reputado poeta cancioneril de la época de los Reyes Católicos. El artículo examina este grafitti, en primer lugar en el contexto general de los escasos testimonios conservados de escritura poética sobre paredes de construcciones medievales civiles o religiosas. En segundo lugar, en el contexto de las otras escrituras o dibujos sobre las paredes descubiertos en el estudio arqueológico del Castell d¿Alaquàs. Finalmente, se estudian los versos en el contexto del poema doctrinal del Vizconde, examinando al detalle las pocas pero significativas variantes que presenta este nuevo y curioso testimonio respecto a la tradición textual hasta hoy conocida
Computational Insights on the Geometrical Arrangements of Cu(II) with a Mixed-Donor N3S3 Macrobicyclic Ligand
The macrobicyclic mixed-donor N3S3 cage ligand AMME-N3S3sar (1-methyl-8-amino-3,13,16-trithia- 6,10,19-triazabicyclo[6.6.6]eicosane) can form complexes with Cu(II) in which it acts as hexadentate (N3S3) or tetradentate (N2S2) donor. These two complexes are in equilibrium that is strongly influenced by the presence of halide ions (Br− and Cl−) and the nature of the solvent (DMSO, MeCN, and H2O). In the absence of halides the hexadentate coordination mode of the ligand is preferred and the encapsulated complex (“Cu-in2+”) is formed. Addition of halide ions in organic solvents (DMSO or MeCN) leads to the tetradentate complex (“Cu-out+”) in a polyphasic kinetic process, but no Cu-out+ complex is formed when the reaction is performed in water. Here we applied density functional theory calculations to study the mechanism of this interconversion as well as to understand the changes in the reactivity associated with the presence of water. Calculations were performed at the B3LYP/(SDD,6-31G**) level, in combination with continuum (MeCN) or discrete-continuum (H2O) solvent models. Our results show that formation of Cu-out+ in organic media is exergonic and involves sequential halide-catalyzed inversion of the configuration of a N-donor of the macrocycle, rapid halide coordination, and inversion of the configuration of a S-donor. In aqueous solution the solvent is found to have an effect on both the thermodynamics and the kinetics of the reaction. Thermodynamically, the process becomes endergonic mainly due to the preferential solvation of halide ions by water, while the kinetics is influenced by formation of a network of H-bonded water molecules that surrounds the comple
The evolution of the footwall to the Ronda subcontinental mantle peridotites: insights from the Nieves Unit (western Betic Cordillera)
Strongly heterogeneous deformation and extreme metamorphic gradients characterize the dominantly carbonate Nieves Unit in the footwall to the Ronda mantle extrusion wedge in the western Betic Cordillera. A well-developed foliation and mineral lineation, together with isoclinal intrafolial folds, occur in silicate-bearing, calcite or dolomite marbles within a c. 1.5 km thick metamorphic aureole underlying the peridotites. For the inferred maximum pressure of 300 MPa, petrological investigations allow us to define temperature ranges for the main zones of the metamorphic aureole: >510 °C (probably c. 700 °C) for the forsterite zone; 510–430 °C for the diopside zone; 430–360 °C for the tremolite zone; 360–330 °C for the phlogopite zone. Field structural analysis integrated with petrological, microstructural and electron backscatter diffraction textural data document large finite strains consistent with general shear within the metamorphic aureole, associated with NW-directed thrusting of the peridotites. On the other hand, post-kinematic silicate growth suggests that heat diffusion from the high-temperature peridotites continued after the final emplacement of the Ronda mantle extrusion wedge, leading to final zoning of the metamorphic aureole and to local partial annealing of calcite marble textures, particularly in the highest-temperature zone of the thermally softened footwall carbonates. Following substantial cooling, renewed crustal shortening affected the whole Nieves Unit, resulting in widespread development of NE–SW-trending meso-scale folds
Synthesis and Structure of Trinuclear W3S4 Clusters Bearing Aminophosphine Ligands and Their Reactivity toward Halides and Pseudohalides
The aminophosphine ligand (2-aminoethyl)- diphenylphosphine (edpp) has been coordinated to the W3(μ-
S)(μ-S)3 cluster unit to afford trimetallic complex [W3S4Br3(edpp)3]+ (1+) in a one-step synthesis process with high yields. Related [W3S4X3(edpp)3]+ clusters (X = F−, Cl−, NCS−; 2+−4+) have been isolated by treating 1+ with the
corresponding halide or pseudohalide salt. The structure of complexes 1+ to 4+ contains an incomplete W3S4 cubane-type cluster unit, and only one of the possible isomers is formed: the one with the phosphorus atoms trans to the capping sulfur and the amino groups trans to the bridging sulphurs. The remaining coordination position on each metal is occupied by X. Detailed studies using stopped-flow, 31P{1H} NMR, and ESI-MS have been carried out in order to understand the solution behavior and the kinetics of interconversion among species 1+, 2+, 3+, and 4+ in solution. Density functional theory (DFT) calculations have been also carried out on the reactions of cluster 1+ with the different anions. The whole set of experimental and theoretical data indicate that the actual mechanism of substitutions in these clusters is strongly dependent on the nature of the leaving and entering anions. The interaction between an entering F− and the amino group coordinated to the adjacent metal have also been found to be especially relevant to the kinetics of these reactions
Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis.
Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease
Water-Soluble Mo3S4 Clusters Bearing Hydroxypropyl Diphosphine Ligands: Synthesis, Crystal Structure, Aqueous Speciation, and Kinetics of Substitution Reactions
The [Mo3S4Cl3(dhprpe)3]+ (1+) cluster cation has been prepared by reaction between Mo3S4Cl4(PPh3)3 (solvent)2 and the watersoluble 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe, L) ligand. The crystal structure of [1]2[Mo6Cl14] has been determined by X-ray diffraction methods and shows the typical incomplete cuboidal structure
with a capping and three bridging sulfides. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of the diphosphine ligand. Depending on the pH, the hydroxo group of the functionalized diphosphine can substitute the chloride ligands and coordinate to the cluster core to give new clusters with tridentate deprotonated dhprpe ligands of formula [Mo3S4(dhprpe-H)3]+ (2+). A detailed study based on stopped-flow, 31P{1H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of acid−base equilibria and the kinetics of interconversion between the 1+ and the 2+ forms. Both conversion of 1+ to 2+ and its reverse process occur in a single kinetic step, so that reactions proceed at the three metal centers with statistically controlled kinetics. The values of the rate constants under different conditions are used to discuss on the mechanisms of opening and closing of the chelate rings with coordination or dissociation of chloride
Kinetic and DFT Studies on the Mechanism of C−S Bond Formation by Alkyne Addition to the [Mo3S4(H2O)9]4+ Cluster
Reaction of [Mo3(μ3-S)(μ-S)3] clusters with alkynes usually leads to formation of two C−S bonds between the
alkyne and two of the bridging sulfides. The resulting compounds contain a bridging alkenedithiolate ligand, and the metal centers appear to play a passive role despite reactions at those sites being well illustrated for this kind of cluster. A detailed study including kinetic measurements and DFT calculations has been carried out to understand the mechanism of reaction of the [Mo3(μ3-S)(μ-S)3(H2O)9]4+ (1) cluster with two different alkynes, 2-butyne-1,4-diol and acetylenedicarboxylic acid. Stoppedflow experiments indicate that the reaction involves the appearance in a single kinetic step of a band at 855 or 875 nm, depending on the alkyne used, a position typical of clusters with two C−S bonds. The effects of the concentrations of the reagents, the acidity, and the reaction medium on the rate of reaction have been analyzed. DFT and TD-DFT calculations provide information on the nature of the product formed, its electronic spectrum and the energy profile for the reaction. The structure of the transition state indicates that the alkyne approaches the cluster in a lateral way and both C−S bonds are formed simultaneously
On a degenerate non-local parabolic problem describing infinite dimensional replicator dynamics
We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for in bounded domains \Om\sub\R^n which arises in game theory. We prove that solutions converge to if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with , i.e. the finite-time blow-up is global
Thermochemistry of organic azides revisited Dedicated to Prof. Ch. Rüchardt on the Occasion of His 85th Birthday
© 2014 Elsevier B.V. Highly pure samples of 4-nitro-phenyl azide, 1-octyl azide and 1 decyl-azide were prepared for thermochemical studies. Vapour pressures over the solid and the liquid sample of 4-nitro-phenyl azide have been determined by the transpiration method. The molar enthalpies of vaporization/sublimation for this compound were derived from the temperature dependencies of vapour pressures. The molar enthalpy of fusion of 4-nitro-phenyl azide was measured by DSC. The measured data set for 4-nitro-phenyl azide was successfully checked for internal consistency. Molar enthalpies of vaporization of 1-octyl azide and 1 decyl-azide were measured by transpiration. The molar enthalpies of formation of the liquid 1-octyl azide and 1 decyl-azides were derived from the combustion calorimetry. New experimental results for these organic azides have been used to derive their molar enthalpies of formation in the gas state and for comparison with results from quantum-chemical method G4
M/TiO2 (M = Fe, Co, Ni, Cu, Zn) catalysts for photocatalytic hydrogen production under UV and visible light irradiation
In order to improve the photocatalytic response of TiO2 to UV and visible light for hydrogen photoproduction, low cost M/TiO2 semiconductor catalysts were prepared by the impregnation method of five different first row transition metals (M = Fe, Co, Ni, Cu or Zn) on a commercial titania support. The maximum hydrogen production efficiency was achieved for the Cu/TiO2 photocatalyst, with ∼5000 and ∼220 μmol h−1 g−1 H2 production rates for UV and visible irradiation, respectively. Ni/TiO2 and Co/TiO2 also showed a significant photocatalytic activity when UV light was used. The best performing catalyst, Cu/TiO2, was characterized by TEM and XPS measurements. The data showed that Cu was highly dispersed over the TiO2 support and the copper species existed as both reduced Cu0/Cu+ and oxidized Cu2+ on TiO2. Besides, during the hydrogen production reaction, the reduced Cu was partially oxidized to Cu2+ by the transfer of photogenerated holes under UV or visible light irradiation. With UV and visible lamps, the H2 production rates were higher than those obtained with non-impregnated TiO2 by factors of 16 and 3, respectively. These results demonstrated that a Cu/TiO2 photocatalyst could be considered a promising low-cost alternative to the well-known Pt/TiO2 system for hydrogen production, making the Cu-based catalyst an ideal cost-effective candidate for this reactionThe authors would like to thank Ministerio de Economía y Competitividad of Spain (CTQ2015-68951-C3-3-R and MAT2016-80933-R), Ministerio de Ciencia, Innovación y Universidades of Spain (Project RTI2018-099668-B-C22) and FEDER fund
- …