7 research outputs found

    Intracranial Aneurysm Classifier Using Phenotypic Factors: An International Pooled Analysis

    Get PDF
    Intracranial aneurysms (IAs) are usually asymptomatic with a low risk of rupture, but consequences of aneurysmal subarachnoid hemorrhage (aSAH) are severe. Identifying IAs at risk of rupture has important clinical and socio-economic consequences. The goal of this study was to assess the effect of patient and IA characteristics on the likelihood of IA being diagnosed incidentally versus ruptured. Patients were recruited at 21 international centers. Seven phenotypic patient characteristics and three IA characteristics were recorded. The analyzed cohort included 7992 patients. Multivariate analysis demonstrated that: (1) IA location is the strongest factor associated with IA rupture status at diagnosis; (2) Risk factor awareness (hypertension, smoking) increases the likelihood of being diagnosed with unruptured IA; (3) Patients with ruptured IAs in high-risk locations tend to be older, and their IAs are smaller; (4) Smokers with ruptured IAs tend to be younger, and their IAs are larger; (5) Female patients with ruptured IAs tend to be older, and their IAs are smaller; (6) IA size and age at rupture correlate. The assessment of associations regarding patient and IA characteristics with IA rupture allows us to refine IA disease models and provide data to develop risk instruments for clinicians to support personalized decision-making

    Genetic variation in NFE2L2 is associated with outcome following aneurysmal subarachnoid haemorrhage

    Get PDF
    Background and purposeNuclear factor erythroid 2-related factor 2 (NRF2; encoded by the NFE2L2 gene) has been implicated in outcome following aneurysmal subarachnoid haemorrhage (aSAH) through its activity as a regulator of inflammation, oxidative injury and blood breakdown product clearance. The aim of this study was to identify whether genetic variation in NFE2L2 is associated with clinical outcome following aSAH.MethodsTen tagging single nucleotide polymorphisms (SNPs) in NFE2L2 were genotyped and tested for association with dichotomized clinical outcome, assessed by the modified Rankin scale, in both a discovery and a validation cohort. In silico functional analysis was performed using a range of bioinformatic tools.ResultsOne SNP, rs10183914, was significantly associated with outcome following aSAH in both the discovery (n = 1007) and validation cohorts (n = 466). The risk of poor outcome was estimated to be 1.33-fold (95% confidence interval 1.12–1.58) higher in individuals with the T allele of rs10183914 (pmeta-analysis = 0.001). In silico functional analysis identified rs10183914 as a potentially regulatory variant with effects on transcription factor binding in addition to alternative splicing with the T allele, associated with a significant reduction in the NFE2L2 intron excision ratio (psQTL = 1.3 × 10−7).ConclusionsThe NFE2L2 SNP, rs10183914, is significantly associated with outcome following aSAH. This is consistent with a clinically relevant pathophysiological role for oxidative and inflammatory brain injury due to blood and its breakdown products in aSAH. Furthermore, our findings support NRF2 as a potential therapeutic target following aSAH and other forms of intracranial haemorrhage.<br/

    Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors

    Get PDF
    Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits. Cross-ancestry genome-wide association analyses in individuals of European and East Asian ancestry identify 11 new risk loci for intracranial aneurysms and highlight a polygenic architecture explaining a substantial fraction of disease heritability

    Author Correction: Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors.

    No full text
    Correction to: Nature Genetics https://doi.org/10.1038/s41588-020-00725-7, published online 16 November 2020

    Nat Genet

    Get PDF
    Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits

    Genetic Risk Score for Intracranial Aneurysms: Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity

    Get PDF
    Background: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. Methods: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. Results: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (ÎČ=-4.82×10-3per year [95% CI, -6.49×10-3to -3.14×10-3]; P=1.82×10-8), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). Conclusions: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH
    corecore