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Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type 

of stroke. To discover new risk loci and the genetic architecture of intracranial 

aneurysms, we performed a cross-ethnic, genome-wide association study in 10,754 cases 

and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 

11 of which are new. We reveal a polygenic architecture and explain over half of the 

disease heritability. We show a high genetic correlation between ruptured and 

unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells 

using gene mapping and heritability enrichment. Drug target enrichment shows 

pleiotropy between intracranial aneurysms and anti-epileptic and sex hormone drugs, 
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providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for 

smoking and high blood pressure, the two main clinical risk factors, play important 

roles in intracranial aneurysm risk and drive most of the genetic correlation between 

intracranial aneurysms and other cerebrovascular traits.  

 

An intracranial aneurysm is a balloon-shaped dilatation, usually located at a branch of an 

intracranial artery. It is present in 3% of the population1. Rupture of an intracranial aneurysm 

causes an aneurysmal subarachnoid hemorrhage (aSAH), a severe type of stroke. 

Approximately one third of patients die, and another third remain dependent for daily life 

activities2. Intracranial aneurysms occur in relatively young people with a mean age of 50 

years and is twice as common in women over 50 years old compared to men of that age. 

Genetic predisposition plays an important role in the disease with an aSAH heritability of 

41%, as estimated in a twin study3.  

Much is still unknown about the genetic architecture of intracranial aneurysms4,5. 

Family-based studies identified a number of variants with Mendelian inheritance6-10, but 

genome-wide association studies (GWAS) have identified multiple common variants, 

suggesting a polygenic model of inheritance5,11-13. The largest GWAS published to date, 

involving 2,780 cases and 12,515 controls, identified six risk loci11,13. Based on that GWAS, 

the explained single nucleotide polymorphism (SNP)-based heritability of intracranial 

aneurysms was estimated as being only 4.1-6.1%, depending on population5. 

We aimed to further characterize the genetic architecture of intracranial aneurysms by 

performing a cross-ethnic GWAS meta-analysis on a total of 10,754 cases and 306,882 

controls from a wide range of European and East Asian ancestries. We included both cases 

with unruptured intracranial aneurysm and aSAH (i.e. with ruptured intracranial aneurysm), 

enabling us to identify potential risk factors specific for intracranial aneurysm rupture. We 
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also looked for genetic similarities between intracranial aneurysms and related traits, 

including other types of stroke, vascular malformations and other aneurysms, and analyzed 

whether known risk factors for intracranial aneurysms play a causal genetic role. Further, we 

investigated enrichment of genetic associations in functional genetic regions, tissue subtypes, 

and drug classes to provide insight into intracranial aneurysm pathophysiology. 

 

Results 

GWAS of intracranial aneurysms. Our GWAS meta-analysis on intracranial aneurysms 

consisted of two stages. The Stage 1 meta-analysis included all European ancestry individuals 

and consisted of individual-level genotypes from 23 different cohorts that were merged into 

nine European-ancestry strata based on genotyping platform and country. These strata were 

each analyzed in a logistic mixed model14 and then meta-analyzed, while also including 

summary statistics from a population-based cohort study: the Nord-Trøndelag Health Study 

(the HUNT Study). This resulted in 7,495 cases and 71,934 controls and 4,471,083 SNPs 

passing quality control (QC) thresholds (Online Methods, Supplementary Table 1). Stage 2 

was a cross-ethnic meta-analysis including all Stage 1 strata and summary statistics of East 

Asian individuals from two population-based cohort studies: The Biobank Japan (BBJ) and 

the China Kadoorie Biobank (CKB). This totaled 10,754 cases and 306,882 controls and 

3,527,309 SNPs in Stage 2 (Supplementary Table 1).  

The Stage 1 association study resulted in 11 genome-wide significant loci (P ≤ 5 × 10-

8; Fig. 1 and Supplementary Table 2). Transethnic genetic correlation analysis showed a 

strong correlation between the Stage 1 meta-analysis of European ancestry and an analysis 

including only East Asian ancestry samples (ρg = 0.938 ± 0.165, standard error (SE) for 

genetic impact and 0.908 ± 0.146 for genetic effect; Supplementary Table 3). Stage 2 
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increased the number of genome-wide significant loci to 17 (Table 1 and Fig. 1). All but two 

loci (8q11.23, rs6997005 and 15q25.1, rs10519203) were also associated with intracranial 

aneurysms in the samples of East Asian ancestry added in Stage 2 (P < 0.05/11), and two loci 

were monomorphic in East Asians (Table 1). The Stage 2 loci included 11 novel risk loci and 

six previously reported risk loci11. We used conditional and joint (COJO, GCTA 

v1.91.1beta)15 analysis to condition the Stage 1 GWAS summary statistics on the lead SNP in 

each locus. We found that none of the loci consisted of multiple independent SNPs and that 

each locus tagged a single causal variant (data not shown). Genomic inflation factors 

(lambdaGC) were 1.050 for the Stage 1 meta-analysis and 1.065 for Stage 2 (Supplementary 

Fig. 1 and Supplementary Table 4). The linkage disequilibrium score regression (LDSR) 

intercept was 0.957 ± 0.008 (SE) for the Stage 1 meta-analysis and 0.982 ± 0.008 for the East 

Asian subset. This indicated that, in all GWAS analyses, observed inflation was due to 

polygenic architecture. 

Conditioning the Stage 1 GWAS summary statistics on GWAS summary statistics for 

systolic and diastolic blood pressure (BP, Neale lab summary statistics, 

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-

samples-in-the-uk-biobank) using multi-trait conditional and joint (mtCOJO)16 analysis 

resulted in one additional genome-wide significant locus (rs2616406, P = 6.22 × 10-8 in the 

Stage 1 GWAS, P = 4.50 × 10-9 after mtCOJO with BP). mtCOJO with smoking pack-years 

summary statistics or including genetic risk scores (GRSs) for smoking (cigarettes per day)17 

or blood pressure related traits18 did not result in additional loci (data not shown). 

 

Characterization of GWAS loci. An overview of the genic position, alleles, effect size and 

P-value of the strongest association per locus is shown in Table 1. We used summary 

statistics-based Mendelian randomization (SMR), co-localization analysis using eCAVIAR, 
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and transcriptome-wide association study (TWAS, http://gusevlab.org/projects/fusion/) to 

annotate potential causative genes in these loci (Supplementary Tables 5-9 and 

Supplementary Fig. 2). A description of this annotation process is described in the 

Supplementary Note. Since SMR, eCAVIAR and TWAS all require LD reference panels, we 

limited the annotation to the loci identified in the European ancestry Stage 1 GWAS meta-

analysis. This resulted in 11 potential causative genes at six unique loci: 

SLC22A5/SLC22A4/P4HA2 (chr5), NT5C2/MARCKSL1P1 (chr10), FGD6/NR2C1 (chr12), 

PSMA4 (chr15), and BCAR1/RP11-252K23.2 (chr16) (Table 1 and Supplementary Table 5). 

Although we did not find evidence for involvement of SOX17 in the chr8 locus, previous 

studies did find functional evidence for SOX1719,20. Therefore, we annotated the chr8 locus as 

SOX17.  

In the Stage 2 GWAS, six additional loci were identified: 6q16.1, 10q23.33, 11p15.5, 

12p12.2, 12q21.22, and 20p11.23. Due to the combined European and East Asian LD 

structures, these loci cannot reliably be mapped to genes using the above-mentioned 

techniques. Of the six additional loci, four have previously been linked to blood pressure, 

namely 6q16.1 (rs11153071)21, 10q23.33 (rs11187838)22, rs11044991 (12p12.2)23, and 

rs2681492 (12q21.22)23,24. A detailed description of the genes and loci is found in the 

Supplementary Note.  

The product of the potentially causative gene FGD625 plays a role in angiogenesis, 

and defects may lead to a compromised formation of blood vessels. FGD6 is a vascular 

endothelial cell (vEC) signaling gene involved in stress signaling in vECs26. Loss-of-function 

mutations in THSD1 and SOX17 lead to subarachnoid hemorrhage in animal models. 

Products of these genes both have key roles in vECs7,19,27. BCAR1 is a ubiquitously expressed 

gene whose protein product is a sensor for mechanical stress28. The PSMA4 locus is known 

for associations with a number of smoking and respiratory system traits29-32. 
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Predictors of intracranial aneurysm rupture. We assessed whether genetic risk factors 

differed between ruptured and unruptured intracranial aneurysms using stratified GWAS 

analysis. The number of cases with unruptured intracranial aneurysm was small (n = 2,070). 

Therefore, in addition to performing a stratified GWAS on patients with a ruptured aneurysm 

versus patients with an unruptured intracranial aneurysm (aSAH-vs-uIA), we also performed 

a stratified GWAS on only patients with ruptured intracranial aneurysm versus controls 

(aSAH-only) and a stratified GWAS on only patients with an unruptured intracranial 

aneurysm versus controls (uIA-only) (Supplementary Table 4 and Supplementary Fig. 1e-j). 

Overall, 69% of intracranial aneurysm cases had a ruptured intracranial aneurysm and 28% 

an unruptured intracranial aneurysm, while 3.8% had an unknown rupture status. The aSAH-

only and uIA-only GWASs identified a number of genome-wide significant loci, all of which 

reached genome-wide significance in the Stage 1 and 2 GWAS meta-analyses of intracranial 

aneurysms. In the aSAH-vs-uIA GWAS, we found no genome-wide significant loci. 

Furthermore, genetic correlation analysis showed a high correlation of 0.970 ± 0.133 (SE) 

between ruptured and unruptured intracranial aneurysms (Supplementary Table 3). Together 

these findings indicate a strong similarity in genetic architecture between ruptured and 

unruptured intracranial aneurysm.  

 

SNP-based heritability. We estimated the SNP-based heritability of intracranial aneurysms 

to be 21.6 ± 2.8% (SE) on the liability scale with LD score regression (tool named LDSC33, 

https://github.com/bulik/ldsc) and 29.9 ± 5.4% using SumHer34 

(http://dougspeed.com/sumher/) (Table 2). This corresponds to an explained fraction of the 

twin-based heritability (h2 = 41%)3 of 53-73% depending on the method used (LDSC or 

SumHer). We used a prevalence for unruptured intracranial aneurysms of 3%1 for the 
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conversion to the liability scale. Since this GWAS was an admixture of patients with ruptured 

and unruptured intracranial aneurysms, this prevalence may not be representative of the 

whole study population. Therefore, we calculated liability scale heritability using a range of 

prevalence values (Supplementary Fig. 3a). This shows that, also when using lower 

prevalence estimates (K), the explained SNP-based heritability is substantial (K = 0.02: h2 = 

19.3 ± 2.5% (LDSC), 26.8 ± 4.8% (SumHer); K = 0.01: 16.3 ± 2.1% (LDSC), 22.6 ± 4.1% 

(SumHer)).  

A substantial SNP-based heritability is also found for ruptured intracranial aneurysms 

(SAH-only, h2 = 0.140 ± 0.020) and unruptured intracranial aneurysms (uIA-only, h2 = 0.223 

± 0.044). The difference between the heritability estimates could suggest differences in 

genetic architecture, but estimates depend on the prevalence estimate (Supplementary Fig. 

3b,c), meaning these differences should be interpreted with caution.   

 

Enrichment of genomic regions. To understand the disease mechanisms of intracranial 

aneurysms, we applied several heritability enrichment analyses using LD-score regression 

(LDSR). Partitioning on functional genomic elements showed a clear enrichment of 

heritability in regulatory elements, including enhancer and promoter histone marks 

H3K4me1, H3K27Ac and H3K9Ac, super enhancers, and DNAse I hypersensitivity sites 

(Fig. 2a). Such enrichment of regulatory elements in the genome is also seen in other 

polygenic traits and indicates that the architecture of intracranial aneurysms is polygenic35. 

Partitioning heritability per chromosome further supported a polygenic architecture as 

heritability was associated with the number of SNPs on a chromosome (Fig. 2b).  

Tissue-specific LDSR did not show enrichment for any tissue (Supplementary Tables 

10 and 11). We then performed cell-type enrichment analysis using single-cell RNA-

sequencing (scRNAseq) reference data derived from mouse brain36. No enrichment was 
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found using a scRNAseq dataset of mouse brain blood vessels37 (Supplementary Table 12). 

Using a larger dataset defining cell-types in the mouse brain36, we found enrichment in 

‘endothelial mural cells’, which is a combined set of vascular endothelial and mural cells 

(enrichment = 2.31 ± 0.41 (SE), P = 1.65 × 10-3, Fig. 2c), and in midbrain neurons 

(enrichment = 2.23 ± 0.37, P = 6.56 × 10-4).  

LD-pruned enrichment analysis using GARFIELD showed that genes specific for 

blood vessels were enriched (Fig. 2d and Supplementary Table 13), further supporting the 

role of promoters and enhancers (Fig. 2e).  

 

Causal genetic roles of blood pressure and smoking. To assess which phenotypes causally 

influence the risk of intracranial aneurysms, we performed generalized summary statistics-

based Mendelian randomization (GSMR) using summary statistics for all phenotypes 

available in the UK Biobank (Supplementary Table 14). We used the Stage 1 summary 

statistics excluding the UK Biobank data as outcome. In this analysis, we chose a stringent 

value for the multiple testing threshold of 376, which was the number of traits passing the 

GSMR quality control parameters. Sixteen traits were statistically significant after correction 

for multiple testing (Fig. 3a). All statistically significant traits were related to either smoking 

or blood pressure (BP), which are the two main clinical risk factors for unruptured 

intracranial aneurysms and aSAH1,38,39. To determine whether genetic predisposition for 

smoking and BP were causal genetic risk factors independent of one another, we conditioned 

the Stage 1 GWAS summary statistics on GWAS summary statistics for smoking and BP 

using multi-trait conditional and joint analysis (mtCOJO). We used summary statistics for 

both systolic BP (SBP) and diastolic BP (DBP) combined to condition on BP and summary 

statistics for pack-years to condition on smoking (Fig. 3a and Supplementary Table 14). All 

GSMR effects diminished after conditioning on either BP or pack-years and remained when 
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conditioning on the other risk factor. The mtCOJO method itself did not affect the effect size 

estimates as conditioning on standing height did not affect the estimates. These findings 

provide strong evidence that the genetic predisposition for BP and smoking are independent 

genetic causes of intracranial aneurysms (Fig. 3b). 

Since the phenotype values of the exposure traits were inverse rank-normalized, the 

GSMR effect size of SBP (βxy = 1.058 ± 0.187) and pack-years (βxy = 0.973 ± 0.236) cannot 

easily be interpreted. Therefore, we performed an additional GSMR analysis for BP with an 

updated version of the UK Biobank GWAS (http://www.nealelab.is/uk-biobank/), including 

raw phenotype values for quantitative traits (Supplementary Table 15). For BP traits, the 

GSMR analysis resulted in an effect size estimate of 0.095 ± 0.019 for DBP and 0.047 ± 

0.011 for SBP, meaning an 8-12% increase in intracranial aneurysm risk per mmHg increase 

of DBP and a 3.7-6% increase in intracranial aneurysm risk per mmHg increase of SBP, 

assuming a linear effect of BP on intracranial aneurysm liability. In addition, age at high BP 

diagnosis had a significant GSMR effect (P = 1.79 × 10-4, βxy = 0.163 ± 0.044), indicating an 

increase in intracranial aneurysm risk of 13-23% for each year of additional high BP 

exposure. We did not include smoking quantitative traits because these were not normally 

distributed (data not shown) and could, therefore, lead to a biased effect estimate. 

We then tested whether the effects of smoking and BP were different between 

ruptured (SAH-only) and unruptured intracranial aneurysms (uIA-only, Supplementary Table 

16). The GSMR effect sizes followed the same trend for all phenotypes, but ‘Hypertension 

(Self-reported)’ had a stronger effect on ruptured intracranial aneurysms (SAH-only: βxy = 

6.74 ± 0.61 (SE), all intracranial aneurysms: 2.97 ± 0.42, uIA-only: 2.38 ± 0.70), while 

amlodipine use had a weaker effect on unruptured intracranial aneurysms and became 

statistically non-significant (uIA-only: βxy = 4.77 ± 3.90, P = 0.22, all intracranial aneurysms: 

βxy = 11.4 ± 2.10, P = 5.25 × 10-8, SAH-only: βxy = 13.1 ± 2.60, P = 5.25 × 10-7). Although 
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the effect of self-reported hypertension on SAH-only was stronger, conditioning on blood 

pressure using mtCOJO mitigated the effect (βxy = 1.02 ± 0.45, P = 0.024, data not shown). 

Since the power to detect GSMR effects in the uIA-only sample is much lower compared to 

all intracranial aneurysms and SAH-only due to limited sample size, further investigation is 

required to make inferences about genetic risk factors for rupture. 

Traits influencing female hormones are suggested to play a role in aSAH risk40. Only 

two female hormone-related traits had enough genome-wide significant risk loci to pass 

GSMR quality control. These were ‘age when periods started (menarche)’ and ‘had 

menopause’. Neither of these showed a causal relationship with intracranial aneurysms in the 

GSMR analysis (Supplementary Table 14). 

 

Drivers of genetic correlation with vascular traits. To identify traits correlated with 

intracranial aneurysms, we analyzed Stage 1 summary statistics using LDHub41. LDHub 

includes a subset of the summary statistics used for GSMR and a number of summary 

statistics from publicly available sources. Traits that showed correlations that reached the 

Bonferroni threshold for multiple testing (P = 0.05/464) included several blood pressure 

(BP)-related traits, including diastolic BP (DBP) (ρg = 0.223, P = 5.40 × 10-9) and systolic BP 

(SBP) (ρg = 0.256, P = 1.34 × 10-8) and smoking traits, such as pack-years (ρg = 0.330, P = 

7.87 × 10-8) (Supplementary Table 17).  

We used LDSR to calculate the genetic correlation of intracranial aneurysms with 

other stroke subtypes (ischemic stroke (IS)42 and intracerebral hemorrhage (ICH)), with other 

vascular malformation types (intracranial arteriovenous malformation (AVM)43 and cervical 

artery dissection44), and with abdominal aortic aneurysm (AAA)45. For IS, a correlation of 

0.195 ± 0.079 (P = 0.014) was found with intracranial aneurysms (Fig. 3c and Supplementary 

Table 3). After conditioning the intracranial aneurysm GWAS on either BP or on pack-years, 
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which are clinical risk factors for both IS and intracranial aneurysms1,38,39,46, the correlation 

was no longer statistically significant and reduced to 0.121 ± 0.081 for BP and 0.147 ± 0.084 

for pack-years. The correlation disappeared after conditioning on both risk factors (ρg = 0.009 

± 0.083, P = 0.916). When conditioning on an unrelated but heritable trait (standing height), 

the correlation remained (ρg = 0.238 ± 0.081, P = 0.003). No genetic correlation was found 

for any of the IS subtypes. 

We found a statistically significant genetic correlation between intracranial aneurysms 

and ICH (ρg = 0.447 ± 0.184, P = 0.015), which was mainly driven by deep ICH (ρg = 0.516 ± 

0.198, P = 0.009), and not by lobar ICH (P = 0.534). After conditioning the intracranial 

aneurysm GWAS on either BP or pack-years, which are also important risk factors for ICH47, 

the correlation with deep ICH decreased (ρg = 0.288 ± 0.189 for BP and 0.234 ± 0.192 for 

pack-years) and was no longer statistically significant. Conditioning on height had a much 

smaller effect (ρg = 0.380 ± 0.196). 

A genetic correlation was found between intracranial aneurysms and AAA (ρg = 0.302 

± 0.105, P = 0.004). Conditioning on pack-years strongly reduced the correlation between 

intracranial aneurysms and AAA (ρg = 0.173 ± 0.117, P = 0.138), whereas BP did not (ρg = 

0.264 ± 0.117, P = 0.024).  

There was no genetic correlation between intracranial aneurysms and carotid artery 

dissection (ρg = 0.151 ± 0.180, P = 0.401), whereas for vertebral artery dissection and the 

combined set of vertebral and carotid artery dissection, a larger, albeit non-statistically 

significant, estimate was observed (ρg = 0.281 ± 0.159, P = 0.077 and ρg = 0.174 ± 0.149, P = 

0.066, respectively) (Supplementary Table 3). For AVM, a negative SNP-based heritability 

was estimated, which could be due to the small sample size of this GWAS (1,123 cases and 

1,935 controls). Therefore, we performed a lookup of all SNPs identified in the Stage 1 and 2 
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intracranial aneurysm GWAS in the summary statistics of the AVM GWAS43 but were 

unable to replicate any of these SNP associations (P < 0.05/17) (Supplementary Table 18).  

 

Drug target enrichment. To identify pleotropic pathways between intracranial aneurysms 

and other diseases that contain known drug targets, we assessed enrichment in genes targeted 

by drugs and drug classes48. Gene-based P-values were calculated with MAGMA, resulting 

in 29 genes that passed the Bonferroni threshold for multiple testing (P < 0.05/18,106, 

Supplementary Table 19). The anti-hypertensive drugs ambrisentan and macitentan showed a 

statistically significant enrichment (P = 1.35 × 10-5, Supplementary Table 20), which was 

driven by a single gene (EDNRA). Drug class enrichment analysis showed that drugs in the 

classes ‘anti-epileptics’ were enriched (area under the curve (AUC) = 0.675, P = 8 × 10-5; 

Supplementary Table 21). The most statistically significant enriched drugs within this class 

are blockers of Na+ and Ca2+ channels, namely phenytoin, zonisamide, and topiramate49 

(Supplementary Table 20). These channels are important in blood pressure regulation, as well 

as in several other biological mechanisms. The other enriched drug class is ‘sex hormones + 

modulators of the genital system’ (AUC = 0.652, P = 2.02 × 10-4). We also used MAGMA to 

study enrichment in gene pathways but found no statistically significant results 

(Supplementary Table 22). 

 

Discussion 

We identified 11 novel risk loci for intracranial aneurysms and confirmed six previously 

identified risk loci, yielding a total of 17 risk loci for intracranial aneurysms. A SNP-based 

heritability of 21.6% was found, explaining over half of the total heritability. We showed 

strong evidence that the majority of intracranial aneurysm heritability is polygenic. Our 
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results further highlight several major features of the genetic architecture of intracranial 

aneurysms. First, we identified endothelial cells as a key cell type in intracranial aneurysm 

risk. Second, we showed that, out of 375 tested traits, smoking and BP predisposition were 

the main genetic risk factors for intracranial aneurysms. Third, we showed that the main 

drivers of the genetic correlation between intracranial aneurysms and other stroke types and 

between intracranial aneurysms and abdominal aortic aneurysms are genetic predisposition 

for smoking and blood pressure. Last, we found pleiotropic characteristics of anti-epileptic 

drugs and sex hormones with intracranial aneurysms. 

Through gene-mapping incorporating gene expression datasets and distinct 

bioinformatics analyses, we were able to identify 11 potential causative genes within six of 

the Stage 1 risk loci. Many of these genes have known or putative roles in blood vessel 

function and blood pressure regulation. We found heritability enrichment in genes that are 

specifically expressed in a combined set of endothelial and mural cells, and not in other 

vascular cell types. Together, the identified potential causative genes and heritability 

enrichment analyses suggest an important role of the vascular endothelial cell (vEC) in 

intracranial aneurysm development and rupture. 

Through genetic correlation and formal causal inference methods, we established that 

genetic predisposition for smoking and BP are the most important independent genetic risk 

factors for intracranial aneurysms1. First, using causal inference with GSMR, we showed that 

genetic predisposition for these traits drives a causal increase in intracranial aneurysm risk. 

Then, using multi-trait conditional analysis, we showed that smoking and high BP are 

causative of intracranial aneurysms, independent of one another. By using non-transformed 

continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) measures in the 

UK Biobank, we estimated the increase in intracranial aneurysm risk per 1 mmHg increase of 

SBP to be 3.7-6%, and that of DBP to be 8-12%. These strong effects provide genetic 
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evidence for clinical prevention by lowering blood pressure. Since smoking dose is not 

normally distributed, we were not able to estimate a quantitative effect of smoking on 

intracranial aneurysms, but this has been done before using non-genetic methods50-52. Future 

studies that model risk prediction using polygenic risk scores should determine whether the 

polygenic risks of genetic risk factors for intracranial aneurysms are clinically relevant risk 

factors for the disease. 

We found that genetic correlations of intracranial aneurysms with ischemic stroke (IS) 

and deep intracerebral hemorrhage (ICH) are mainly driven by genetic predisposition for 

smoking and BP. For ICH, conditioning on smoking and BP did not completely mitigate the 

genetic correlation with intracranial aneurysms, suggesting additional shared genetic causes. 

For vertebral artery dissection, a substantial but not statistically significant correlation with 

intracranial aneurysms was found, whereas this was absent in carotid artery dissection. We 

showed that the genetic correlation between intracranial aneurysms and AAA was driven by 

smoking, but not by BP. This implies that intracranial aneurysms are more dependent on BP 

compared to AAA. This observation could be a result of different ratios of unruptured and 

ruptured aneurysms included in the two GWASs. The AAA GWAS consists of mainly 

unruptured AAA45, and while the role of BP on AAA rupture is clear, the effect on 

developing AAA is a matter of debate53.  

One of the main aims of intracranial aneurysm research is to prevent rupture of 

intracranial aneurysms and thus avoid the devastating consequences of aSAH. We performed 

various analyses in an attempt to identify genetic predictors specific for intracranial aneurysm 

rupture. Instead, we found a very strong genetic correlation between ruptured and unruptured 

intracranial aneurysms. These analyses together indicate that the common variant genetic 

architecture of ruptured and unruptured aneurysms are strikingly similar. 
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The heritability of unruptured intracranial aneurysms has never been studied in twins 

and may therefore not be an optimal estimate for intracranial aneurysm heritability. One twin 

study estimated the heritability of aSAH at 41%3. Our finding that the genetic architecture of 

uIA and aSAH are similar suggests that this heritability estimate may also be accurate for 

unruptured intracranial aneurysms. This means that, in European ancestry populations, 53-

73% of the heritability of intracranial aneurysms can be explained by variants tagged in this 

GWAS.  

Using transethnic genetic correlation, we found a remarkable similarity of genetic 

architecture between the European ancestry and East Asian ancestry GWASs of more than 

90.8 ± 14.6% (SE). This indicates that the majority of common-variant genetic causes are the 

same, regardless of ancestry. However, since the LD structures remain distinct, current 

methods for summary statistic-based enrichment analysis cannot effectively account for 

population-specific variation in a cross-ethnic GWAS. 

Drug class enrichment showed pleiotropic characteristics of anti-epileptic drugs and 

sex hormones with the genetic association of intracranial aneurysms. It has been suggested 

that sex hormones might play a role in intracranial aneurysms40, potentially explaining why 

women have a higher intracranial aneurysm risk than men1. However, as causal inference 

analysis with GSMR did not show evidence for the involvement of female hormones, further 

investigation is required. Enrichment of the anti-epileptic drug class may indicate shared 

disease mechanisms between intracranial aneurysms and epilepsy. The main mechanism of 

anti-epileptic drugs is through blocking Na+ and Ca2+ ion channels49. Together with other ion 

channels, these play essential roles in contraction and relaxation of the blood vessels54. 

Mutations in the ion-channel gene PKD2 (TRRP2) are known to cause intracranial 

aneurysms. This gene product, along with other members of the TRP gene family, regulates 

systemic blood pressure through vasoconstriction and vasodilation55,56. More research on the 
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effect of anti-epileptics on vascular tension and blood pressure will enhance our 

understanding of the disease-causing mechanisms. Furthermore, this could help to identify 

methods of intracranial aneurysm prevention using anti-epileptics or related drugs. 

In conclusion, we performed a GWAS meta-analysis of intracranial aneurysms, 

identifying 11 new risk loci, confirming 6 previously identified risk loci, and explaining over 

half of the heritability of intracranial aneurysms. We found strong evidence for a polygenic 

architecture. Through gene-mapping and heritability enrichment methods, we discovered a 

possible role for endothelial cells in intracranial aneurysm  development. We showed that the 

genetic architecture of unruptured and ruptured aneurysms are very similar. The well-known 

clinical risk factors, smoking and hypertension, were identified as main genetic drivers of  

intracranial aneurysms. These risk factors also explained most of the similarity to other stroke 

types, IS and deep ICH, which could open a window for clinical prevention. We also found 

pleiotropic effects between intracranial aneurysms and anti-epileptic drugs, which require 

further investigation to understand the shared mechanisms of intracranial aneurysms and 

epilepsy. Our findings represent a major advance in understanding the pathogenesis of 

intracranial aneurysms and an important step towards the development of effective genetic 

risk prediction and prevention of intracranial aneurysm development and subsequent aSAH in 

the future. 
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Figure legends 

Figure 1 | GWAS meta-analysis association results. SAIGE logistic mixed model 

association P-values of the Stage 1 (upwards direction) and Stage 2 (downwards direction) 

GWAS meta-analyses. The horizontal axis indicates chromosomal position. The vertical axis 

indicates -log10(P-value) of the association. The dotted lines indicate the genome-wide 

significance threshold of P = 5 × 10-8. Lead SNPs of each locus are highlighted with a 

diamond, and SNPs in close proximity (± 500 kb) are colored in pink or purple, depending on 

chromosome index parity. Labels are gene or locus names annotated using SMR, eCAVIAR 

and TWAS, or prior information of intracranial aneurysm-associated genes. Labels or loci 

identified only in the Stage 2 GWAS are shown in red.   

 

Figure 2 | Heritability and functional enrichment analyses. a, Partitioned LDSR 

enrichment of regulatory elements. Labels indicate type of regulatory element or histone 

mark. On the horizontal axis, the enrichment is shown. Enrichment = 1 indicates no 

enrichment. Statistical significance was defined as P-value < 0.05 divided by the number of 

annotations (52). Effective n varies per SNP (see Methods). Points are estimates and error 

bars denote one standard error in the direction of no effect. Statistics derived from two-sided, 

weighted linear regression. No P-value adjustment. b, Partitioned LDSR heritability analysis 

per chromosome. On the horizontal axis, the proportion of SNPs on each chromosome is 

shown. On the vertical axis, the proportion of SNP-based heritability is shown. The linear 

regression line is shown in blue. Data are presented as point estimate ± standard error. 
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Statistics are the same as used for a. c, Partitioned LDSR enrichment analysis of scRNAseq 

brain cell types. Format and statistics are the same as used for a. d, GARFIELD analysis of 

tissues. On the horizontal axis, the enrichment of annotations is shown; on the vertical axis, 

the corresponding -log10(P-value) is shown. Dashed line indicates the significance threshold 

of P = 0.05 divided by the number of annotations. Odds ratios are derived by logistic 

regression. P-values are unadjusted, derived from two-sided test. e, GARFIELD analysis of 

regulatory regions defined by histone modifications. Format and statistics are the same as 

used for d.  

 

Figure 3 | Cross-trait analyses. a, GSMR analysis of UK Biobank predictors on the Stage 1 

intracranial aneurysm GWAS, conditioned on traits depicted by column labels with mtCOJO. 

Numeric values are the GSMR effect sizes. The top 13 traits are blood pressure-related traits. 

The bottom three traits are smoking-related. Statistical significance was defined as P-value < 

0.05 divided by the number of traits that passed quality control (376). Square fill colors 

indicate -log10(P-value) of the GSMR effect. All 16 traits that pass the multiple testing 

threshold for significance in the unconditioned analysis are shown. BP, blood pressure. 

Presented n is sample size in UK Biobank GWAS. For intracranial aneurysms, effective n per 

SNP was used. P-values from two-sided linear regression, unadjusted. b, Causality diagram 

further explaining the analyses of a: GSMR analysis showed that genetic risk for smoking 

and BP are causative of intracranial aneurysms. Using mtCOJO, it was found that the genetic 

factors associated with BP and smoking cause intracranial aneurysms through independent 

mechanisms. Statistics are the same as used for a. BP, n = 317,754 samples; smoking, n = 

101,726 samples. c, Genetic correlation analysis with LDSR. Genetic correlation estimates 

are indicated by color and numeric value. Axis labels on the left denote the trait correlated 

with intracranial aneurysms. Labels on the top denote the trait for which the Stage 1 
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intracranial aneurysm GWAS was conditioned using mtCOJO. More details are provided in 

Supplementary Table 3. Presented n is effective sample size for trait on the left, except for IS 

and ICH+IS, where an n per SNP was used and average n is shown. IS, ischemic stroke; ICH, 

intracerebral hemorrhage; AAA, abdominal aortic aneurysm. 
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Table 1 | Lead associations of genome-wide significant risk loci. Association statistics were derived by SAIGE logistic mixed model. P-values 1 
are unadjusted from a two-sided test. Risk loci reaching genome-wide significant threshold (P < 5 × 10-8) in the Stage 2 GWAS of European and 2 
East Asian ancestry individuals are shown. Chr, Chromosome; Position, basepair position on GRCh37; EA, effect allele; OA, other allele; Stage 1, 3 
European ancestry only GWAS meta-analysis; East Asian, subset of samples from Japan and China; Stage 2, meta-analysis of European ancestry 4 
and East Asian data; EAF, effect allele frequency; SE, standard error of beta. Annotated genes are potentially causative genes identified using 5 
summary statistics based Mendelian randomization (SMR), eCAVIAR and transcriptome-wide association study (TWAS). Associated traits are 6 
cardiovascular traits and stroke risk factors with which the lead SNP is associated. CAD, coronary artery disease; SBP, systolic blood pressure; 7 
IS, ischemic stroke; AAA, abdominal aortic aneurysm; DBP, diastolic blood pressure; CVD, cardiovascular disease; COPD, chronic obstructive 8 
pulmonary disease. †Known locus, described in Hussain et al11. *Another SNP in this locus (r2 > 0.8 with the Stage 2 lead SNP) has a lower P-9 
value due to differences in LD patterns between European and East Asian populations. For locus 15q25.1, another SNP in that locus reaches 10 
genome-wide significance in Stage 1. **For two SNPs, no East Asian association statistics could be obtained because these SNPs are 11 
monomorphic in Japanese and Chinese populations (LDlink, https://ldlink.nci.nih.gov/). 12 

SNP Locus Chr Position EA OA Stage EAF beta SE P-value Annotated genes Associated traits 

rs6841581 4q31.22† 4 148401190 A G 
Stage 1 0.131 -0.262 0.031 1.08 × 10-17* 

- CAD East Asian 0.297 -0.181 0.028 6.55 × 10-11 

Stage 2 0.222 -0.218 0.021 3.22 × 10-26 

rs4705938 5q31.1 5 131694077 T C 
Stage 1 0.549 0.120 0.019 2.55 × 10-10 

SLC22A5/SLC22A4/P4HA2 Lung function East Asian NA NA NA NA** 

Stage 2 0.549 0.120 0.019 2.55 × 10-10 

rs11153071 6q16.1 6 97039741 A G 
Stage 1 0.185 0.158 0.032 5.86 × 10-7* 

- SBP, migraine, 
sleep quality East Asian 0.113 0.143 0.041 5.29 × 10-4 

Stage 2 0.158 0.153 0.025 1.25 × 10-9 

rs62516550 8q11.23† 8 55467028 T C 
Stage 1 0.389 0.169 0.023 1.44 × 10-13* 

SOX17 - East Asian 0.087 0.102 0.049 3.70 × 10-2 

Stage 2 0.335 0.157 0.021 3.44 × 10-14 

rs1537373 9p21.3† 9 22103341 T G 
Stage 1 0.514 -0.186 0.019 2.60 × 10-22 

- IS, AAA, CAD East Asian 0.342 -0.165 0.029 1.43 × 10-8 

Stage 2 0.462 -0.180 0.016 2.86 × 10-29 
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rs11187838 10q23.33 10 96038686 A G 
Stage 1 0.415 -0.075 0.019 1.24 × 10-4 

- SBP, migraine, fat 
free mass East Asian 0.473 -0.108 0.025 1.81 × 10-5 

Stage 2 0.436 -0.087 0.015 1.55 × 10-8 

rs79780963 10q24.32† 10 104952499 T C 
Stage 1 0.078 -0.225 0.039 6.82 × 10-9 

NT5C2/MARCKSL1P1 - East Asian 0.371 -0.163 0.032 3.11 × 10-7 

Stage 2 0.254 -0.188 0.025 2.34 × 10-14 

rs2280543 11p15.5 11 203788 T C 
Stage 1 0.041 0.162 0.053 2.19 × 10-3 

- - East Asian 0.131 0.277 0.038 2.87 × 10-13 

Stage 2 0.101 0.238 0.031 1.16 × 10-14 

rs11044991 12p12.2 12 20174364 A G 
Stage 1 0.038 -0.142 0.053 7.47 × 10-3 

- 
Mean arterial 

pressure East Asian 0.476 -0.125 0.025 6.74 × 10-7 

Stage 2 0.395 -0.128 0.023 1.74 × 10-8 

rs2681472 12q21.33 12 90008959 A G 
Stage 1 0.844 0.086 0.029 2.86 × 10-3 

- 
SBP, DBP, pulse 
pressure, CVD, 

CAD 
East Asian 0.629 0.131 0.026 5.29 × 10-7 

Stage 2 0.719 0.116 0.020 6.71 × 10-9 

rs7137731 12q22 12 95490999 T C 
Stage 1 0.647 -0.138 0.020 3.31 × 10-12* 

FGD6/NR2C1 - East Asian 0.640 -0.086 0.026 1.01 × 10-3 

Stage 2 0.644 -0.119 0.016 4.88 × 10-14 

rs3742321 13q13.1† 13 33704065 T C 
Stage 1 0.764 -0.148 0.022 4.10 × 10-11 

- - East Asian 0.756 -0.135 0.032 2.71 × 10-5 

Stage 2 0.762 -0.144 0.018 5.47 × 10-15 

rs8034191 15q25.1 15 78806023 T C 
Stage 1 0.659 -0.115 0.022 1.22 × 10-7* 

PSMA4 
Smoking 

behaviour, lung 
function, COPD 

East Asian 0.976 -0.161 0.091 7.69 × 10-2 

Stage 2 0.676 -0.117 0.021 2.75 × 10-8 

rs7184525 16q23.1 16 75437186 A G Stage 1 0.450 0.148 0.023 8.80 × 10-11* BCAR1/RP11-252K23.2 - 
East Asian 0.459 0.123 0.028 1.04 × 10-5 
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Stage 2 0.453 0.138 0.018 5.60 × 10-15 

rs11661542 18q11.2† 18 20223695 A C 
Stage 1 0.516 -0.166 0.021 5.74 × 10-16 

- - East Asian 0.401 -0.087 0.026 6.82 × 10-4 

Stage 2 0.471 -0.135 0.016 3.17 × 10-17 

rs4814863 20p11.23 20 19469685 A G 
Stage 1 0.248 0.096 0.024 6.71 × 10-5 

- - East Asian 0.513 0.110 0.025 1.10 × 10-5 

Stage 2 0.375 0.103 0.017 3.22 × 10-9 

rs39713 22q12.1 22 30343186 T C 
Stage 1 0.088 0.182 0.033 4.10 × 10-8 

- - East Asian NA NA NA NA** 

Stage 2 0.088 0.182 0.033 4.10 × 10-8 
 13 

14 
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Table 2 | SNP heritability estimates. Values are given on the observed scale (h2
obs) and liability scale (h2

liab). Prevalence used for conversion to 15 
the liability scale is shown. Effective number samples was used for the conversion, as described in the Supplementary Note. For SumHer, two 16 
analyses were done: one with settings suggested by the SumHer authors, using LD reference data from the Health and Retirement Study (HRS), 17 
and one to mimic LDSC, with the same settings and reference panel (HapMap3, hm3). neff, effective sample size. 18 

Trait Method h2
obs SE (h2

obs) Prevalence h2
liab SE (h2

liab) Cases Controls neff 
Intracranial 

aneurysms (Stage 1) LDSC 0.295 0.038 0.03 0.216 0.028 7,495 71,934 24,253 
Intracranial 

aneurysm (Stage 1) SumHer 0.409 0.074 0.03 0.299 0.054 7,495 71,934 24,253 
Intracranial 

aneurysm (Stage 1) 
SumHer 
(LDSC) 0.276 0.037 0.03 0.202 0.027 7,495 71,934 24,253 

aSAH-only LDSC 0.296 0.043 0.005 0.140 0.020 5,140 71,952 17,019 
uIA-only LDSC 0.393 0.075 0.03 0.223 0.044 2,070 71,952 7,721 

  19 
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Online Methods 20 

Recruitment and diagnosis. Detailed cohort descriptions are given in the Supplementary 21 

Note. In brief, all intracranial aneurysm cases have a saccular intracranial aneurysm. We 22 

included both cases with ruptured (thus with aSAH) and unruptured intracranial aneurysms 23 

confirmed using imaging. Patients with conditions known to predispose to intracranial 24 

aneurysms, including autosomal dominant polycystic kidney disease, Ehlers-Danlos disease 25 

and Marfan’s syndrome, were excluded. All controls were unselected controls. Controls were 26 

matched by genotyping platform and country on cohort-level. 27 

 28 

Genotype data quality control. Cohorts for which individual-level data were available are 29 

specified in Supplementary Table 1. An overview of inclusion and exclusion criteria, data 30 

collection and genotyping methods for each cohort are given in the Supplementary Note. 31 

Genotypes were lifted to reference genome build GRCh37. An extensive QC was performed 32 

on each cohort, described in detail in the Supplementary Note. Cohorts were merged into 33 

strata based on genotyping platform and country. An overview of strata compositions is given 34 

in Supplementary Table 1. Next, QC was performed on each stratum, outlined in the 35 

Supplementary Note. Genotypes were imputed against the Haplotype Reference Consortium 36 

(HRC) release 1.1. After imputation, another set of QC steps was taken, which is described in 37 

the Supplementary Note. An overview of the number of SNPs, cases and controls excluded in 38 

the QC is shown in Supplementary Table 1.  39 

 40 

Individual-level association analysis. For each stratum, single-SNP associations were 41 

calculated using SAIGE (0.29.3)14. SAIGE uses a logistic mixed model to account for 42 

population stratification and saddle point approximation to accurately determine P-values 43 
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even in the presence of case-control imbalance. Details on how these steps were performed 44 

are described in the Supplementary Note.  45 

 46 

Meta-analysis. We meta-analyzed association statistics from our individual level SAIGE 47 

analysis with association statistics prepared by other groups who used the same analysis 48 

pipeline. There were two meta-analysis stages: Stage 1, including all individual level data and 49 

the European ancestry summary statistics (HUNT Study), and Stage 2, including all 50 

individual-level data and all summary statistics (HUNT Study, China Kadoorie Biobank, 51 

Biobank Japan). Summary statistics that were generated by other groups were cleaned prior 52 

to meta-analysis, as described in the Supplementary Note. We used METAL (release 2011-53 

03-25)57 for the inverse-variance weighted meta-analysis across all studies. Only SNPs 54 

present in at least 80% of the strata were included.  55 

 56 

Conditional analysis. To investigate whether a genome-wide significant locus consisted of 57 

multiple independent signals, we used GCTA-COJO15. COJO uses GWAS summary statistics 58 

and the LD structure of a reference panel to iteratively condition GWAS summary statistics 59 

on top SNPs. We used control samples from stratum sNL2 (Doetinchem Cohort Study) as a 60 

reference panel for LD estimation. We used a stepwise approach to condition on the top 61 

independent SNPs with P < 5 × 10-8 and minor allele frequency (MAF) > 0.01. In addition, 62 

we conditioned the summary statistics on the identified top independent hits to determine if 63 

any additional signal remained. 64 

 65 

Genetic risk score analysis. To investigate the effect of genetic risk for blood pressure (BP) 66 

and smoking on intracranial aneurysms, we used its genetic risk scores (GRS) as covariates in 67 

a SAIGE association model. Summary statistics for BP-related traits18 and cigarettes per day 68 
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(CPD)17 were obtained. SNPs to include in the GRS models were determined using different 69 

LD thresholds by clumping (r2 of 0.1, 0.2, 0.5, 0.8 or 0.9). Individual-level GRSs were 70 

calculated using plink v1.9 (https://www.cog-genomics.org/plink2/). The optimal models 71 

were selected based on the highest fraction of variance explained (adj.r.squared from lm() in 72 

R/3.6.1). An optimal r2 of 0.1 and 0.9 were selected for BP and CPD, respectively. A set of 73 

20,000 individuals from the UK Biobank, including all intracranial aneurysm cases, was used 74 

to train the model. Individual levels GRSs using the optimized set of SNPs was used as a 75 

covariate in an association analysis using SAIGE. 76 

 77 

eQTL-based gene mapping. We used eCAVIAR58 to determine colocalization of GWAS 78 

hits with eQTLs. Vascular and whole blood eQTLs from GTEx v7 were used. eCAVIAR 79 

used SNP Z-scores and LD correlation values to calculate a colocalization posterior 80 

probability (CLPP) of a trait GWAS locus and an eQTL. eCAVIAR requires an LD matrix to 81 

determine colocalization of eQTLs and GWAS hits. We calculated LD in SNPs 1 Mb on both 82 

sides of the SNPs with lowest Stage 1 GWAS P-value, using European ancestry Health and 83 

Retirement Study (HRS dbGaP accession code phs000428.v2.p2) samples as a reference. 84 

Multiple causal SNPs were allowed. 85 

TWAS is a method to perform differential expression analysis with eQTL-based 86 

predicted transcript levels. We used a summary statistics-based approach integrated in 87 

FUSION59. We used the 1000 Genomes LD weights provided by FUSION, and vascular and 88 

blood eQTL datasets provided on the FUSION reference webpage 89 

(http://gusevlab.org/projects/fusion/). Default settings were used for all other options. 90 

SMR60 was used to highlight genes for which expression has a causal influence on 91 

intracranial aneurysm risk. eQTL reference datasets from vascular tissues and blood provided 92 

by the creators of SMR were used. These include: CAGE, GTEx V7 (aorta, coronary artery, 93 
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tibial artery and whole blood) and Westra 94 

(https://cnsgenomics.com/software/smr/#DataResource). eQTLs with P < 5 × 10-8 were 95 

selected. The MAF cutoff was set at 0.01. European ancestry samples from the HRS were 96 

used as LD reference panel. Both the single SNP and multi-SNP approaches were used. 97 

eCAVIAR, TWAS and SMR results were used to annotate genes to genome-wide 98 

significant GWAS loci identified in the Stage 1 GWAS meta-analysis. This approach is 99 

explained in more detail in the Supplementary Note. 100 

 101 

SNP-based heritability. To calculate SNP-based heritability, we used LDSC (1.0.0)33 to 102 

perform LD-score regression (LDSR), and we used SumHer34. LDSC makes the assumption 103 

that the contribution of each SNP to the total SNP heritability is normally distributed and not 104 

affected by MAF or LD. SumHer is the summary statistics based equivalent of an LD-105 

adjusted kinship (LDAK) method to estimate SNP heritability and, instead, assumes that 106 

heritability is higher for low MAF variants and lower in high LD regions. In addition, 107 

SumHer models inflation due to residual confounding as a multiplicative parameter, whereas 108 

LDSC models this additively (the LDSR intercept). Heritability estimates were converted to 109 

the liability scale using effective sample size. More details and the rationale of these analyses 110 

are described in the Supplementary Note. 111 

 112 

Functional enrichment analysis using LDSC. To assess enrichment of heritability in 113 

functional annotations, tissues, chromosomes and minor allele frequency (MAF) bins, we 114 

used stratified LD-score regression with LDSC61. When available, we used the publicly 115 

available partitioned LD scores for pre-defined annotations provided by the LDSC authors 116 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/); otherwise, we calculated our own 117 

LD scores using European ancestry samples from the 1000 Genomes (1000G) project. To 118 
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further assess cell type-specific enrichment, we used a method introduced by Skene et al.36. 119 

For this analysis, we used single-cell RNA sequencing (scRNAseq) gene expression data 120 

derived from mouse brain to define gene sets specific to cell types in brain36 and brain blood 121 

vessels37. A detailed description of the rationale and parameters is given in the 122 

Supplementary Note. 123 

 124 

Functional enrichment analysis using GARFIELD. The GWAS functional enrichment tool 125 

GARFIELD v262 was used to explore regulatory, functional and tissue-specific enrichment of 126 

the GWAS summary statistics. It determines whether GWAS SNPs reaching a certain P-127 

value threshold are enriched in annotations of interest compared to the rest of the genome 128 

while accounting for distance to nearest transcription start site, MAF and LD. We used the 129 

default annotations provided by the authors to test enrichment in tissues 130 

(https://www.ebi.ac.uk/birney-srv/GARFIELD/). We tested enrichment of SNPs passing P-131 

value thresholds for every log10-unit between 0.1 and 10-8. A more detailed description of the 132 

method is given in the Supplementary Note. 133 

 134 

Genetic correlation. We assessed correlation between intracranial aneurysms and other traits 135 

using LDHub and LD-score regression (LDSR) with LDSC. To assess genetic correlation 136 

between intracranial aneurysms and many non-stroke-related traits, we used LD Hub41. This 137 

platform uses LDSR to assess genetic correlation with a large number of publicly available 138 

GWASs. For the correlation of intracranial aneurysms and other stroke subtypes, we obtained 139 

summary statistics for all stroke (AS), cardioembolic stroke (CE), any ischemic stroke 140 

(AnyIS), large artery stroke (LAS), small vessel disease (SVD)42, deep, lobar, and combined 141 

intracerebral hemorrhage (ICH)63, carotid- and vertebral artery dissection44, arteriovenous 142 

malformation (AVM)43, and abdominal aortic aneurysms (AAA)45. We used LDSC to 143 
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calculate genetic correlation. LD scores from European ancestry individuals from 1000G 144 

were calculated for SNPs in the HapMap 3 SNP set and used to calculate genetic correlation. 145 

Since the heritability estimate was negative for AVM, due to the small sample size, we 146 

performed a SNP lookup of the Stage 2 intracranial aneurysm loci that passed the multiple 147 

testing threshold (P < 5 × 10-8) from the GWAS of AVM43. 148 

 149 

Conditional genetic correlation. We used mtCOJO16 to condition Stage 1 intracranial 150 

aneurysm GWAS summary statistics on summary statistics from the Neale lab UK Biobank 151 

GWAS release 1 (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-152 

phenotypes-for-337000-samples-in-the-uk-biobank) for smoking and blood pressure (BP) 153 

following a method described previously16. The resulting summary statistics were then used 154 

to calculate genetic correlation between intracranial aneurysms, conditioned on another trait, 155 

and other vascular diseases. LD scores supplied by LDSC (eur_w_ld_chr/[chr].l2.ldscore.gz) 156 

were used. European ancestry control samples from stratum sNL2 (from the Doetinchem 157 

Cohort Study) were used as an LD reference panel. All other settings were left as default. 158 

 159 

Trans-ancestry genetic correlation. Popcorn version 0.9.964 was used to assess genetic 160 

correlation between intracranial aneurysm cohorts of European and East Asian ancestry. 161 

Popcorn uses separate LD score reference panels per ancestry to account for differences in 162 

LD structure between cohorts. We used LD scores provided by the authors of the Popcorn 163 

tool (https://github.com/brielin/Popcorn) for European and East Asian descent 164 

(EUR_EAS_all_gen_[eff/imp].cscore). We calculated the genetic correlation for both genetic 165 

impact and genetic effect. 166 

 167 
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Mendelian randomization. To infer causal genetic effects of exposure traits on intracranial 168 

aneurysms (the outcome), we used GSMR16. We used a meta-analysis of all European 169 

ancestry strata, except the UK biobank (stratum sUK2), as outcome. As exposures we used 170 

summary statistics of 2,419 traits analyzed using UK Biobank data, prepared by the Neale 171 

lab, release 2017 (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-172 

phenotypes-for-337000-samples-in-the-uk-biobank). For a second GSMR run with raw 173 

quantitative phenotypes, we used the 2019 GWAS release from the same group. GSMR was 174 

run using the GCTA wrapper (v1.92.2). More details on the method and settings are 175 

described in the Supplementary Note. 176 

In order to determine which of the top significant GSMR traits were independent 177 

genetic causes of intracranial aneurysms, the Stage 1 GWAS summary statistics were 178 

conditioned on the top traits, i.e. smoking and blood pressure (BP). Conditioning was done 179 

using mtCOJO (GCTA v1.92.2 beta) as described in the “Conditional genetic correlation” 180 

section of the Online Methods. 181 

 182 

Drug target enrichment. Drug target enrichment analysis was performed according to a 183 

previously described method48. Gene-wise P-values were calculated with MAGMA v1.06 184 

using a combined approach of average and top P-values per gene region. Gene-set analysis 185 

was performed using MAGMA, with pathways curated from MSigDB65,66, TargetValidation 186 

(https://www.targetvalidation.org), and with drug-target sets described previously48. Drug-187 

class enrichment analysis was performed using a Wilcoxon-Mann-Whitney test. Drug gene-188 

set P-values were tested for enrichment in drug-classes. Enrichment was expressed as the 189 

area under the curve (AUC). AUCs were compared between drug gene-sets within a drug 190 

class and all other drug gene-sets.  191 

 192 
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Statistics. The different statistical tests used in the different analysis methods are as follows: 193 

(1) SAIGE: Logistic mixed model with saddle-point approximation for P-values. Resulting 194 

beta values are on the logit scale. (2) METAL: Inverse-variance weighted meta-analysis. 195 

Resulting betas are on the same scale as the input (here, logit scale). (3) eCAVIAR: Directly 196 

calculates a colocalization posterior probability from expression and trait GWAS effect sizes 197 

using Bayes’ rule. (4) TWAS: Uses to calculate a Z-score, which is tested against a null-198 

distribution of mean zero and unit variance to calculate a P-value. (5) SMR: The Mendelian 199 

randomization effect of exposure (gene expression) x on outcome y is the ratio of the estimate 200 

of the effect of SNP z on outcome y and SNP z on exposure x. The SNP effect Z-scores are 201 

used to calculate a χ2-statistic with one degree of freedom. (6) LDSC: Weighted linear 202 

regression, where weights are the inverse of the LD score of a SNP. The slope is divided by 203 

sample size and multiplied by the number of SNPs. Standard errors are obtained by jackknife 204 

method. (7) GARFIELD: Calculates enrichment odds ratios using logistic regression, 205 

accounting for LD, distance to transcription start site, and binary annotations. (8) POPCORN: 206 

Maximum likelihood test. Standard error is calculated using a block jackknife method. (9) 207 

GSMR: Two-sided linear regression after excluding pleiotropic SNPs using ‘heterogeneity in 208 

dependent instrument’-test. (10) MAGMA (gene test): Uses a multiple linear regression to 209 

calculate gene effects. Subsequent P-value is derived from two-sided F-test. MAGMA (gene 210 

set test): Drug P-values are calculated by comparing gene Z-scores (derived from P-values 211 

reported in Supplementary Table 19) in the gene set to those outside the gene set. P-values 212 

are derived from one-sided t-test. (11) SumHer: Conceptually similar to LDSC, but with 213 

different weight based on linkage disequilibrium and minor allele frequency. 214 

 215 
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Data availability statement 216 

Summary statistics for the Stage 1 and Stage 2 GWAS meta-analyses, the SAH-only, and 217 

uIA-only GWAS, and a meta-analysis consisting of only East Asian samples, including 218 

effective sample size per SNP, can be accessed through Figshare 219 

(https://doi.org/10.6084/m9.figshare.11303372) and through the Cerebrovascular Disease 220 

Knowledge Portal (http://www.cerebrovascularportal.org). Detailed information on access to 221 

publicly available data is given in the Life Sciences Reporting Summary. 222 
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Sciences Reporting Summary. 257 

 258 

Methods-only references 259 

57. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of 260 
genomewide association scans. Bioinformatics 26, 2190-2191 (2010). 261 

58. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. 262 
Am. J. Hum. Genet. 99, 1245-1260 (2016). 263 

59. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide 264 
association studies. Nat. Genet. 48, 245-252 (2016). 265 

60. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 266 
complex trait gene targets. Nat. Genet. 48, 481-487 (2016). 267 



 47 

61. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-268 
wide association summary statistics. Nat. Genet. 47, 1228-1235 (2015). 269 

62. Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through 270 
integration of functional annotations with association signals. Nat. Genet. 51, 343-271 
353 (2019). 272 

63. Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a 273 
susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511-521 274 
(2014). 275 

64. Brown, B.C., Asian Genetic Epidemiology Network Type 2 Diabetes, C., Ye, C.J., Price, 276 
A.L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. 277 
Am. J. Hum. Genet. 99, 76-88 (2016). 278 

65. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative 279 
phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 280 
267-73 (2003). 281 

66. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach 282 
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 283 
15545-15550 (2005). 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

297 



 48 

 298 


