14 research outputs found

    The persistent shadow of the supermassive black hole of M 87

    Get PDF
    In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet

    Compagno generale. Prime considerazioni sulla biografia di Francesco Zani (1884-1958)

    No full text
    Nato a Modena il 23 novembre 1884 da Dirce Grandi e Giuseppe, \uabmaestro di musica\ubb1, Francesco Carlo Filippo Zani si avvi\uf2 diciannovenne alla carriera militare. Dopo la guerra in Libia nel 1912 e gli incarichi da insegnante e giudice militare, fu comandante in alta Italia e poi generale di divisione ad Ancona. Al vertice della divisione \u201cMessina\u201d dal 1939, nel 1941 raggiunse l\u2019altra sponda dell\u2019Adriatico e assunse poteri militari e civili in Montenegro. Dall\u20198 settembre 1943 al 1946 si consum\uf2 per lui un complicato approdo al \u201cpartito nuovo\u201d togliattiano, diventando presidente del comitato di Solidariet\ue0 democratica (Sd) fino alla morte. Quanto segue \ue8 frutto del primo tentativo, a nostra conoscenza, di leggere insieme momenti diversi di questa biografia. Pi\uf9 che concentrarci sul trasformismo o sulla cesura bellica, ci interessa indagare alcuni aspetti contraddittori di una complessa figura politico-militare. Crediamo, con Loriga, che \uabrompere l\u2019eccesso di coerenza\ubb non sia affermare l\u2019irriducibile pluralit\ue0 biografica, ma \uabsvelare la densit\ue0 sociale e la stratificazione storica di una vita\ubb (2012, pp. 201 e 191). \uc8 nostro intento, quindi, scavare in questa densit\ue0 per gettare nuova luce su un nodo centrale del Novecento: \u201cfare i conti\u201d con il fascismo

    Ultrasound vector flow imaging â\u80\u93 Could be a new tool in evaluation of arteriovenous fistulas for hemodialysis?

    No full text
    Abstract INTRODUCTION: We report the use of a new ultrasound technique to evaluate the axial and lateral components of a complex flow in the arteriovenous fistula (AVF). Vector Flow Imaging (VFI) allows to identify different components of the flow in every direction, even orthogonal to the flow streamline, represented by many single vectors. VFI could help to identify flow alterations in AVF, probably responsible for its malfunction. METHODS: From February to June 2016, 14 consecutive patients with upper-limb AVF were examined with a Resona 7 (Mindray, Shenzhen, China) ultrasound scanner equipped with VFI. An analysis of mean velocity, angular direction and mean number of vectors impacting the vessel wall was carried out. We also identified main flow patterns present in the arterial side, into the venous aneurysm and in correspondence of significant stenosis. RESULTS: A disturbed flow with the presence of vectors directed against the vessel walls was found in 9/14 patients (64.28%): in correspondence of the iuxta-anastomotic venous side (4/9; 44.4%), into the venous aneurysmal tracts (3/9; 33.3%) and in concomitance of stenosis (2/9; 22.2%). The mean velocity of the vectors was around 20-25 cm/s, except in presence of stenosis, where the velocities were much higher (45-50 cm/s). The vectors directed against the vessel walls presented high angle attack (from 45° to 90°, with a median angular deviation 65°). CONCLUSIONS: VFI was confirmed to be an innovative and intuitive imaging technology to study the flow complexity in the arteriovenous fistulas

    High-frame rate vector flow imaging of the carotid bifurcation

    No full text
    Abstract Carotid artery atherosclerotic disease is still a significant cause of cerebrovascular morbidity and mortality. A new angle-independent technique, measuring and visualizing blood flow velocities in all directions, called vector flow imaging (VFI) is becoming available from several vendors. VFI can provide more intuitive and quantitative imaging of vortex formation, which is not clearly distinguishable in the color Doppler image. VFI, as quantitative method assessing disturbed flow patterns of the carotid bifurcation, has the potential to allow better understanding of the diagnostic value of complex flow and to enhance risk stratification. This pictorial review article will show which new information VFI adds for the knowledge of hemodynamics in comparison to the conventional ultrasound techniques. Teaching points • VFI is an angle-independent technique measuring flow velocities in all directions. • This kind of VFI is based on a plane wave multidirectional excitation technique. • VFI allows quantitative assessment of carotid streamlines progression and visualizes vorticity. • VFI does not allow a precise comprehension of streamlines’ 3D shape. • VFI allows a better understanding of carotid artery complex flows

    High-Frame Rate Vector Flow Imaging of the Carotid Bifurcation in Healthy Adults: Comparison With Color Doppler Imaging

    No full text
    To evaluate the carotid bifurcation in healthy adults using a commercial system equipped with high-frame rate vector flow imaging (VFI) based on the plane wave and to compare VFI with color Doppler imaging. METHODS: Carotid bifurcation diameters and flow characteristics of 60 vessels in 60 healthy volunteers were evaluated quantitatively and qualitatively to assess complex flow patterns and their extension and duration. RESULTS: Complex flow in the internal carotid artery (ICA) was associated with a statistically significant difference in the ΔICA sinus-to-common carotid artery (CCA) diameter ratio (the relative change in diameter between the CCA and ICA sinus.) Vector flow imaging and color Doppler imaging were in accordance when detecting complex flow in 96.7% of cases; in 3.3% of cases, only VFI identified small recirculation areas of short duration. Vector flow imaging highlighted a larger extension of the complex flow (mean ± SD, 47.7 ± 28.5 mm2 ; median, 45.5 mm2 ) compared with color Doppler imaging (mean, 29.2 ± 19.9 mm2 ; median, 29.5 mm2 ) and better depicted different complex flow patterns; a strong correlation (r = 0.84) was found between the ΔICA sinus-to-CCA diameter ratio and the complex flow extension. Vector flow imaging showed a longer duration of the flow disturbances (mean, 380 ± 218 milliseconds; median, 352.5 milliseconds) compared with color Doppler imaging (mean, 325 ± 206 milliseconds; median, 333 milliseconds), and there was a strong correlation (r = 0.92). CONCLUSIONS: Vector flow imaging is as effective as color Doppler imaging in the detection of flow disturbances, but it is more powerful in the assessment of complex flow patterns

    Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

    Get PDF
    3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3 mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable gamma -ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of similar to 20 mu as (at a redshift of z=0.536 this corresponds to similar to 0.13 pc similar to 1700 Schwarzschild radii with a black hole mass M-BH=8x10(8) M-circle dot). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of similar to 15 c and similar to 20 c (similar to 1.3 and similar to 1.7 mu as day(-1), respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3 mm core and the outer jet. The intrinsic brightness temperature of the jet components are less than or similar to 10(10) K, a magnitude or more lower than typical values seen at >= 7 mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths

    A Search for Pulsars around Sgr A* in the First Event Horizon Telescope Data Set

    No full text
    In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (λ = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars—which typically exhibit steep emission spectra—are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (≲2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region
    corecore