13 research outputs found

    Estabilidad de catalizadores Ni soportados en ZrO₂ durante la hidrogenación selectiva de CO₂ hacia metano

    Get PDF
    En el presente trabajo se estudió el efecto del método de síntesis de soportes de ZrO₂, y el efecto de la carga metálica sobre la hidrogenación catalítica del CO₂ para la producción de metano. Los soportes utilizados fueron ZrO₂ comercial (ZrO₂-COM), y óxidos de zirconio sintetizados por los métodos de coprecipitación (ZrO₂-COP) y Sol-Gel (ZrO₂-SG). Para los catalizadores sintetizados se utilizaron cargas metálicas de níquel del 10 y 20% peso. La evaluación catalítica se llevó a cabo a presión atmosférica, en un intervalo de temperatura de 350-500°C, utilizando una relación molar estequiométrica de CO₂/H₂. Los resultados más sobresalientes se obtuvieron con los catalizadores 20%/NiZrO₂-COM y 20%/NiZrO₂-COP con conversiones de CO2 cercanas al 50% a temperaturas de 400°C. El catalizador 20%/NiZrO₂-COP presentó una buena estabilidad con una caída en la conversión de solo el 8% a un tiempo de corrida experimental de 200 horas.In this work the effect of synthesis method for ZrO₂ as support, and the effect of metal loading on the catalytic hydrogenation of CO₂ to methane production were studied. The supports were commercial ZrO₂ (ZrO₂-COM), and zirconia synthesized by the coprecipitation (ZrO₂-COP) and the Sol-Gel (ZrO₂-SG) methods. Nickel metal loading of 10 and 20 wt. % were impregnated on the synthetized catalyst. Catalytic evaluation test was performed at atmospheric pressure conditions, in a temperature range of 350-500°C, and using a stoichiometric CO₂/H₂ molar ratio. The most outstanding results were obtained with the catalysts 20%/NiZrO₂-COM and 20%/NiZrO₂-COP with CO2 conversions close to 50% at temperatures of 400°C. The catalyst 20%/NiZrO₂-COP showed a very good stability with a decrease in CO2 conversion of only 8% after 200 hours of experimental test

    J-PLUS: The javalambre photometric local universe survey

    Get PDF
    ABSTRACT: TheJavalambrePhotometric Local UniverseSurvey (J-PLUS )isanongoing 12-band photometricopticalsurvey, observingthousands of squaredegrees of theNorthernHemispherefromthededicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mountedon a telescopewith a diameter of 83 cm, and isequippedwith a uniquesystem of filtersspanningtheentireopticalrange (3500–10 000 Å). Thisfiltersystemis a combination of broad-, medium-, and narrow-band filters, optimallydesigned to extracttherest-framespectralfeatures (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizingstellartypes and delivering a low-resolutionphotospectrumforeach pixel of theobservedsky. With a typicaldepth of AB ∼21.25 mag per band, thisfilter set thusallowsforanunbiased and accuratecharacterization of thestellarpopulation in our Galaxy, itprovidesanunprecedented 2D photospectralinformationforall resolved galaxies in the local Universe, as well as accuratephoto-z estimates (at the δ z/(1 + z)∼0.005–0.03 precisionlevel) formoderatelybright (up to r ∼ 20 mag) extragalacticsources. Whilesomenarrow-band filters are designedforthestudy of particular emissionfeatures ([O II]/λ3727, Hα/λ6563) up to z < 0.017, theyalsoprovidewell-definedwindowsfortheanalysis of otheremissionlines at higherredshifts. As a result, J-PLUS has thepotential to contribute to a widerange of fields in Astrophysics, both in thenearbyUniverse (MilkyWaystructure, globular clusters, 2D IFU-likestudies, stellarpopulations of nearby and moderate-redshiftgalaxies, clusters of galaxies) and at highredshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellarobjects, etc.). Withthispaper, wereleasethefirst∼1000 deg2 of J-PLUS data, containingabout 4.3 millionstars and 3.0 milliongalaxies at r <  21mag. With a goal of 8500 deg2 forthe total J-PLUS footprint, thesenumbers are expected to rise to about 35 millionstars and 24 milliongalaxiesbytheend of thesurvey.Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel, the Spanish Ministry of Economy and Competitiveness (MINECO; under grants AYA2017-86274-P, AYA2016-77846-P, AYA2016-77237-C3-1-P, AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, AGAUR grant SGR-661/2017, and ICTS-2009-14), and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Numerical Approach for the Assessment of Micro-Textured Walls Effects on Rubber Injection Moulding

    No full text
    Micro-surface texturing of elastomeric seals is a validated method to improve the friction and wear characteristics of the seals. In this study, the injection process of high-viscosity elastomeric materials in moulds with wall microprotusions is evaluated. To this end, a novel CFD methodology is developed and implemented in OpenFOAM to address rubber flow behaviour at both microscale and macroscale. The first approach allows analyzing the flow perturbation induced by a particular surface texture and generate results to calculate an equivalent wall shear stress that is introduced into the macroscale case through reduced order modelling. The methodology is applied to simulate rubber injection in textured moulds in an academic case (straight pipe) and a real case (D-ring seal mould). In both cases, it is shown that textured walls do not increase the injection pressure and therefore the manufacturing process is not adversely affected

    High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects

    No full text
    In this work, we present an investigation concerning the evaluation of the catalytic properties of Ni nanoparticles supported on ZrO2, SiO2, and MgAl2O4 for CO2 hydrogenation to methane. The supports were prepared by coprecipitation and sol-gel, while Ni was incorporated by impregnation (10&ndash;20 wt %). X-ray diffraction, nitrogen physisorption, temperature-programmed reduction, H2 pulse chemisorption, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were the main characterization techniques employed. A laboratory fixed-bed reactor operated at atmospheric pressure, a temperature range of 350&ndash;500 &deg;C, and a stoichiometric H2/CO2 molar ratio was used for catalyst evaluation. The most outstanding results were obtained with nickel catalysts supported on ZrO2 with CO2 conversions of close to 60%, and selectivity to methane formation was 100% on a dry basis, with high stability after 250 h of reaction time. The majority presence of tetragonal zirconia, as well as the strong Ni&ndash;ZrO2 interaction, were responsible for the high catalytic performance of the Ni/ZrO2 catalysts

    Quorum sensing network in clinical strains of A. baumannii : AidA is a new quorum quenching enzyme

    Get PDF
    Acinetobacter baumannii is an important pathogen that causes nosocomial infections generally associated with high mortality and morbidity in Intensive Care Units (ICUs). Currently, little is known about the Quorum Sensing (QS)/Quorum Quenching (QQ) systems of this pathogen. We analyzed these mechanisms in seven clinical isolates of A. baumannii. Microarray analysis of one of these clinical isolates, Ab1 (A. baumannii ST-2-clon-2010), previously cultured in the presence of 3-oxo-C12-HSL (a QS signalling molecule) revealed a putative QQ enzyme (α/β hydrolase gene, AidA). This QQ enzyme was present in all nonmotile clinical isolates (67% of which were isolated from the respiratory tract) cultured in nutrient depleted LB medium. Interestingly, this gene was not located in the genome of the only motile clinical strain growing in this medium (A. baumannii strain Ab421-GEIH-2010 [Ab7], isolated from a blood sample). The AidA protein expressed in E. coli showed QQ activity. Finally, we observed downregulation of the AidA protein (QQ system attenuation) in the presence of HO (ROS stress). In conclusion, most of the A. baumannii clinical strains were not surface motile (84%) and were of respiratory origin (67%). Only the pilT gene was involved in surface motility and related to the QS system. Finally, a new QQ enzyme (α/β hydrolase gene, AidA protein) was detected in these strains
    corecore