104 research outputs found

    Oxidation effects in antiaggregogenic properties of Epigallocatechingallate

    Get PDF
    Epigallocatechin-gallate (EGCG), the most abundant flavonoid in green tea, has been extensively studied for its potential in the treatment of amyloid related disorders. This molecule was found to modulate abnormal protein self-assembly, reducing resulting cellular toxicity. EGCG is known to suppress or to slow down the aggregation processes of several proteins, thus supporting the idea that general mechanisms regulate its anti-aggregogenic effects and, interestingly, in the oxidised form it demonstrated an higher efficiency in reducing protein aggregation with respect to intact molecule. We here investigate the effects of intact and oxidized EGCG the thermal aggregation pathway of Bovine Serum Albumin (BSA), a well-known model protein whose aggregation processes are known in details. By means of different spectroscopic methods, we evaluate similarities and differences of the two molecules during protein aggregation. Different solution conditions are investigated, close and away from the isoelectric point of the protein, with the aim of eliciting the role of electrostatics in the observed EGCG-Protein interaction and in the supramolecular assembly which are dramatically dependent on solution conditions

    Dermoscopy and Reflectance Confocal Microscopy for Monitoring the Treatment of Actinic Keratosis with Ingenol Mebutate Gel: Report of Two Cases

    Get PDF
    Introduction: A relatively novel application for dermoscopy and reflectance confocal microscopy (RCM) is their use in the monitoring of topical treatment response for non-melanoma skin cancer. Actinic keratosis (AK) is the early phase of a multistep biologic continuum leading to invasive squamous cell carcinoma. A number of topical therapies are now available for the treatment of AK but their disadvantages include long treatment duration and prolonged local reactions. Ingenol mebutate is a newer therapy for AK which is only applied for 2 or 3 days. Case Report: Dermoscopy and RCM findings in two patients with AK treated with ingenol mebutate confirm that it induces rapid lesion necrosis and specific neutrophil-mediated, antibody-dependent cellular cytotoxicity. Necrosis occurs via mitochondrial membrane disruption, with subsequent eradication of residual tumor cells via transient inflammation. Local skin reactions to ingenol mebutate should be considered part of the drug’s mechanism of action rather than an adverse effect. Conclusion: Ingenol mebutate is a valuable therapy for the treatment of AK. This case report adds further evidence to the usefulness of dermoscopy and RCM in the assessment and monitoring of treatment outcome

    Electrostatics regulate Epigallocatechin-Gallate effects on Bovine Serum Albumin aggregation

    Get PDF
    Protein aggregation processes are complex phenomena often involved in the etiology of several pathologies. It is now assessed that all proteins, in suitable conditions, may undergo supramolecular assembly. Aggregation pathways are known to be controlled by solution conditions which regulate protein-protein and protein-solvent interactions affecting binding mechanisms, morphology and inherent toxicity of the aggregate species. In this context, the presence of small molecules was indicated as a promising method to modulate protein-protein interactions reducing pathogenic aggregation. In the light of the idea that common mechanisms regulate anti-aggregogenic properties of small molecules, we here investigate Epigallocatechin-Gallate (EGCG) effects on the thermal aggregation pathway of Bovine Serum Albumin (BSA), a well-known model protein. EGCG is a small molecule extracted from green tea, which is known to reduce aggregation of key proteins involved in neurodegenerative diseases [1]. Fundamental mechanisms which regulate EGCG effectiveness as therapeutic molecule are still not clearly elucidated. The interaction of EGCG with BSA and its effects on thermal aggregation pathway were investigated by means of spectroscopic methods and Isothermal Titration calorimetry as a function of solution conditions. Results show that electrostatic forces modulated by pH play a key role in regulating EGCG interactions with BSA. Data shows that close to the isoelectric point of the protein, EGCG is found to promote the supramolecular assembly, whilst away from the isoelectric point, EGCG is found to reduce aggregation mechanisms increasing protein conformational stability. These results reveal the large impact of electrostatics in small molecules effects on the protein aggregation phenomena requiring larger investigation aimed at rationalizing their effects on related pathogenic mechanisms

    Dermoscopic Ulceration is a Predictor of Basal Cell Carcinoma Response to Imiquimod: A Retrospective Study

    Get PDF
    Imiquimod is considered one of the treatments of choice for low-risk superficial basal cell carcinoma (sBCC) and an alternative option for non-superficial tumours when surgery is contraindicated or not feasible (1\u20133). In addition to its well-known value in the diagnosis of BCC, dermoscopy has recently been shown to provide valid information about the histopathological subtype or the presence of clinically undetectable pigmentation (4\u20136). The aim of the present study was to investigate whether dermoscopic criteria (especially ulceration) of the primary tumour can predict a favourable response of BCC to imiquimod

    Solution structure of the SGTA dimerisation domain and investigation of its interactions with the ubiquitin-like domains of BAG6 and UBL4A

    Get PDF
    BACKGROUND: The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. METHODOLOGY AND PRINCIPAL FINDINGS: SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes. SIGNIFICANCE: This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex

    Awareness of health risks related to body art practices among youth in Naples, Italy: a descriptive convenience sample study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body art practices have emerged as common activities among youth, yet few studies have investigated awareness in different age groups of possible health complications associated with piercing and tattooing.</p> <p>Methods</p> <p>We investigated perceptions of and knowledge about health risks. To highlight differences among age groups, we gathered data from students at high schools and universities in the province of Naples.</p> <p>Results</p> <p>Of 9,322 adolescents, 31.3% were pierced and 11.3% were tattooed. Of 3,610 undergraduates, 33% were pierced and 24.5% were tattooed (p < 0.05). A higher number of females were pierced in both samples, but there were no gender differences among tattooed students. Among high school students, 79.4% knew about infectious risks and 46% about non-infectious risks; the respective numbers among university students were 87.2% and 59.1%. Only 3.5% of students in high school and 15% of university undergraduates acknowledged the risk of viral disease transmission; 2% and 3% knew about allergic risks. Among adolescents and young adults, 6.9% and 15.3%, respectively, provided signed informed consent; the former were less knowledgeable about health risks (24.7% vs. 57.1%) (p < 0.05). Seventy-three percent of the high school students and 33.5% of the university students had body art done at unauthorized facilities. Approximately 7% of both samples reported complications from their purchased body art.</p> <p>Conclusions</p> <p>Results indicate a need for adequate information on health risks associated with body art among students in Naples, mainly among high school students. Therefore, adolescents should be targeted for public health education programs.</p

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form
    corecore