80 research outputs found

    Diabetogenic milieus induce specific changes in mitochondrial transcriptome and differentiation of human pancreatic islets

    Get PDF
    In pancreatic β-cells, mitochondria play a central role in coupling glucose metabolism to insulin secretion. Chronic exposure of β-cells to metabolic stresses impairs their function and potentially induces apoptosis. Little is known on mitochondrial adaptation to metabolic stresses, i.e. high glucose, fatty acids or oxidative stress; being all highlighted in the pathogenesis of type 2 diabetes. Here, human islets were exposed for 3 days to 25 mm glucose, 0.4 mm palmitate, 0.4 mm oleate and transiently to H2O2. Culture at physiological 5.6 mm glucose served as no-stress control. Expression of mitochondrion-associated genes was quantified, including the transcriptome of mitochondrial inner membrane carriers. Targets of interest were further evaluated at the protein level. Three days after acute oxidative stress, no significant alteration in β-cell function or apoptosis was detected in human islets. Palmitate specifically increased expression of the pyruvate carriers MPC1 and MPC2, whereas the glutamate carrier GC1 and the aspartate/glutamate carrier AGC1 were down-regulated by palmitate and oleate, respectively. High glucose decreased mRNA levels of key transcription factors (HNF4A, IPF1, PPARA and TFAM) and energy-sensor SIRT1. High glucose also reduced expression of 11 mtDNA-encoded respiratory chain subunits. Interestingly, transcript levels of the carriers for aspartate/glutamate AGC2, malate DIC and malate/oxaloacetate/aspartate UCP2 were increased by high glucose, a profile suggesting important mitochondrial anaplerotic/cataplerotic activities and NADPH-generating shuttles. Chronic exposure to high glucose impaired glucose-stimulated insulin secretion, decreased insulin content, promoted caspase-3 cleavage and cell death, revealing glucotoxicity. Overall, expression profile of mitochondrion-associated genes was selectively modified by glucose, delineating a glucotoxic-specific signatur

    Calcul de perméabilité en milieu fissuré : approche méso-macro

    Get PDF
    International audienceIn this paper, a sequential multi-scale framework to solve mass (air or water) transfer problems is described. Numerical results are checked against mechanical and permeation experimental datas from a reinforced concrete specimen under tensile load designed by C. Desmettre and J.P. CharronCe papier présente une approche multi-échelle séquentielle permettant de résoudre des problèmes de transfert de masse (air ou eau). Les résultats numériques sont confrontés à des données expérimentales obtenues par C. Desmettre et J.P. Charron [DES 11]. Ces derniers ont mesuré le débit traversant un tirant en béton armé sous différents paliers de chargement

    Mitochondrial dynamics: quantifying mitochondrial fusion in vitro

    Get PDF
    Mitochondrial fusion is an essential process for preserving the integrity and stability of mitochondrial DNA; however, regulation of this process remains largely mysterious. In this issue of BMC Biology, Schauss and colleagues describe a simple, reliable, and robust novel assay that allows fusion of mammalian mitochondria to be quantified in vitro

    The FASTK family of proteins: emerging regulators of mitochondrial RNA biology

    Get PDF
    Abstract The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1–5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention

    A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression

    Get PDF
    The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexe

    Gamma-ray spectroscopy of positron annihilation in the Milky Way

    Get PDF
    T. Siegert, et al., “Gamma-ray spectroscopy of positron annihilation in the Milky Way”, Astronomy & Astrophysics, Vol. 586, January 2016, https://doi.org/10.1051/0004-6361/201527510. Reproduced with permission from Astronomy & Astrophysics, © ESO”.Context. The annihilation of positrons in the Galaxy's interstellar medium produces characteristic gamma-rays with a line at 511 keV. This gamma-ray emission has been observed with the spectrometer SPI on ESA's INTEGRAL observatory, confirming a puzzling morphology with bright emission from an extended bulge-like region, while emission from the disk is faint. Most known or plausible sources of positrons are, however, believed to be distributed throughout the disk of the Milky Way. Aims: We aim to constrain characteristic spectral shapes for different spatial components in the disk and bulge using data with an exposure that has doubled since earlier reports. Methods: We exploit high-resolution gamma-ray spectroscopy with SPI on INTEGRAL based on a new instrumental background method and detailed multi-component sky model fitting. Results: We confirm the detection of the main extended components of characteristic annihilation gamma-ray signatures, altogether at 58σ significance in the 511 keV line. The total Galactic 511 keV line intensity amounts to (2.74 ± 0.25) × 10-3 ph cm-2 s-1 for our assumed model of the spatial distribution. We derive spectra for the bulge and disk, and a central source modelled as point-like and at the position of Sgr A*, and discuss spectral differences. The bulge (56σ) shows a 511 keV line intensity of (0.96 ± 0.07) × 10-3 ph cm-2 s-1 together with ortho-positronium continuum equivalent to a positronium fraction of (1.080 ± 0.029). The two-dimensional Gaussian that represents the disk emission (12σ) has an extent of 60+10-5 degrees in longitude and a rather large latitudinal extent of 10.5+2.5-1.5 degrees; the line intensity is (1.66 ± 0.35) × 10-3 ph cm-2 s-1 with a marginal detection of the annihilation continuum and an overall diffuse Galactic continuum of (5.85 ± 1.05) × 10-5 ph cm-2 s-1 keV-1 at 511 keV. The disk shows no flux asymmetry between positive and negative longitudes, although spectral details differ. The flux ratio between bulge and disk is (0.58 ± 0.13). The central source (5σ) has an intensity of (0.80 ± 0.19) × 10-4 ph cm-2 s-1.Peer reviewe

    Search for 511 keV Emission in Satellite Galaxies of the Milky Way with INTEGRAL/SPI

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The positron annihilation gamma-ray signal in the Milky Way (MW) shows a puzzling morphology: a very bright bulge and a very low surface-brightness disk. A coherent explanation of the positron origin, propagation through the Galaxy and subsequent annihilation in the interstellar medium has not yet been found. Tentative explanations involve positrons from radioactivity, X-ray binaries, and dark matter (DM). Dwarf satellite galaxies (DSGs) are believed to be DM-dominated and hence promising candidates in the search for 511 keV emission as a result of DM annihilation into electron-positron pairs. The goal of this study is to constrain possible 511 keV gamma-ray signals from 39 DSGs of the MW and to test the annihilating DM scenario. We use the spectrometer SPI on INTEGRAL to extract individual spectra for the studied objects. As the diffuse galactic emission dominates the signal, the large scale morphology of the MW has been modelled accordingly and was included in a maximum likelihood analysis. Alternatively, a distance-weighted stacked spectrum has been determined. Only Reticulum II (Ret II) shows a 3.1 sigma signal. Five other sources show tentative 2 sigma signals. The mass-to-511-keV-luminosity-ratio shows a marginal trend towards higher values for intrinsically brighter objects, opposite to the V band mass-to-light-ratio, which is generally used to uncover DM in DSGs. All derived flux values are above the level implied by a DM interpretation of the MW bulge signal. The signal from Ret II is unlikely to be related to a DM origin alone, otherwise, the MW bulge would be about 100 times brighter than what is seen. Ret II is exceptional considering the DSG sample, and rather points to enhanced recent star formation activity, if its origins are similar to processes in the MW. Understanding this emission may provide further clues regarding the origin of the annihilation emission in the MW.Peer reviewe

    EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation

    Get PDF
    Mitochondria are subcellular organelles critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, as well as their coordinated translation, import and respiratory complex assembly. Here we describe the characterization of exonuclease domain like 2 (EXD2), a nuclear encoded gene that we show is targeted to the mitochondria and prevents the aberrant association of mRNAs with the mitochondrial ribosome. The loss of EXD2 resulted in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of EXD2/CG6744 in D.melanogaster caused developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that could be reversed with an anti-oxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and aging
    corecore