56 research outputs found

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

    Get PDF
    The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies

    Immune infiltration in invasive lobular breast cancer

    Get PDF
    Background: Invasive lobular breast cancer (ILC) is the second most common histological subtype of breast cancer after invasive ductal cancer (IDC). Here, we aimed at evaluating the prevalence, levels and composition of tumor infiltrating lymphocytes (TIL) and their association with clinico-pathological, and outcome variables in ILC, and to compare it with IDC. Methods: We considered two patient series with TIL data: a multi-centric retrospective series (n=614) and the BIG 02-98 study (n=149 ILC and 807 IDC). We compared immune subsets identified by immuno-histochemistry in the ILC (n=159) and IDC (n=468) patients from the Nottingham series, as well as the CIBERSORT immune profiling of the ILC (n=98) and IDC (n=388) METABRIC and TCGA patients. All ILC/IDC comparisons were done in ER-positive/HER2-negative tumors. All statistical tests were two-sided. Results: TIL levels were statistically significantly lower in ILC compared to IDC (fold change =0.79; 95%CI: 0.70-0.88, P<.001). In ILC, high TIL levels were associated with young age, lymph node involvement, and high proliferative tumors. In the univariable analysis, high TIL levels were associated with worse prognosis in the retrospective and BIG 02-98 lobular series, although it did not reach statistical significance in the latter. The Nottingham series revealed that the levels of intra-tumoral but not total CD8+ were statistically significantly lower in ILC compared to IDC. Comparison of the CIBERSORT profiles highlighted statistically significant differences in terms of immune composition. Conclusion: This study shows differences between the immune infiltrates of ER-positive/HER2-negative ILC and IDC in terms of prevalence, levels, localization, composition, and clinical associations

    Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    No full text
    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Search for a resonance decaying to a W boson and a photon in proton-proton collisions at s= \sqrt{s} = 13 TeV using leptonic W boson decays

    No full text
    A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1 ^{-1} . Particle X has electric charge ± \pm 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1^{-1}. Particle X has electric charge ±\pm1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)

    Search for CP violation in D0KS0KS0 \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} decays in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is reported for charge-parity CP violation in D0KS0KS0 \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} decays, using data collected in proton-proton collisions at s= \sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1 ^{-1} , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D \mathrm{D} meson is determined by the pion charge in the reconstructed decays D+D0π+ \mathrm{D}^{*+}\to\mathrm{D^0}\pi^{+} and DD0π \mathrm{D}^{*-}\to\overline{\mathrm{D}}^{0}\pi^{-} . The CP asymmetry in D0KS0KS0 \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} is measured to be ACP(KS0KS0)= A_{CP}(\mathrm{K^0_S}\mathrm{K^0_S}) = (6.2 ± \pm 3.0 ± \pm 0.2 ± \pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the CP asymmetry in the D0KS0π+π \mathrm{D^0}\to\mathrm{K^0_S}\pi^{+}\pi^{-} decay. This is the first CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.A search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    The CMS Statistical Analysis and Combination Tool: COMBINE

    No full text
    International audienceThis paper describes the COMBINE software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run COMBINE and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of COMBINE. However, the online documentation referenced within this paper provides an up-to-date and complete user guide
    corecore