101 research outputs found

    Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors

    Get PDF
    Bacteria have evolved the ability to monitor changes in various physico-chemical parameters and to adapt their physiology and metabolism by implementing appropriate cellular responses to these changes. Energy taxis is a metabolism-dependent form of taxis and is the directed movement of motile bacteria in gradients of physico-chemical parameters that affect metabolism. Energy taxis has been described in diverse bacterial species and several dedicated energy sensors have been identified. The molecular mechanism of energy taxis has not been studied in as much detail as chemotaxis, but experimental evidence indicates that this behaviour differs from metabolism-independent taxis only by the presence of dedicated energy taxis receptors. Energy taxis receptors perceive changes in energy-related parameters, including signals related to the redox and/or intracellular energy status of the cell. The best-characterized energy taxis receptors are those that sense the redox state of the electron transport chain via non-covalently bound FAD cofactors. Other receptors shown to mediate energy taxis lack any recognizable redox cofactor or conserved energy-sensing motif, and some have been suggested to monitor changes in the proton motive force. The exact energy-sensing mechanism(s) involved are yet to be elucidated for most of these energy sensors. By monitoring changes in energy-related parameters, energy taxis receptors allow cells to couple motility behaviour with metabolism under diverse environmental conditions. Energy taxis receptors thus provide fruitful models to decipher how cells integrate sensory behaviours with metabolic activities. doi: 10.1099/mic.0.039214-

    Modeling aerotaxis band formation in Azospirillum brasilense

    Get PDF
    Background Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in the establishment of various plant-microbe associations, including those that benefit plant growth and crop productivity. The motile soil bacterium Azospirillum brasilense colonizes the rhizosphere and promotes the growth of diverse plants across a range of environments. Aerotaxis, or the ability to navigate oxygen gradients, is a widespread behavior in bacteria. It is one of the strongest behavioral responses in A. brasilense and it is essential for successful colonization of the root surface. Oxygen is one of the limiting nutrients in the rhizosphere where density and activity of organisms are greatest. The aerotaxis response of A. brasilense is also characterized by high precision with motile cells able to detect narrow regions in a gradient where the oxygen concentration is low enough to support their microaerobic lifestyle and metabolism. Results Here, we present a mathematical model for aerotaxis band formation that captures most critical features of aerotaxis in A. brasilense. Remarkably, this model recapitulates experimental observations of the formation of a stable aerotactic band within 2 minutes of exposure to the air gradient that were not captured in previous modeling efforts. Using experimentally determined parameters, the mathematical model reproduced an aerotactic band at a distance from the meniscus and with a width that matched the experimental observation. Conclusion Including experimentally determined parameter values allowed us to validate a mathematical model for aerotactic band formation in spatial gradients that recapitulates the spatiotemporal stability of the band and its position in the gradient as well as its overall width. This validated model also allowed us to capture the range of oxygen concentrations the bacteria prefer during aerotaxis, and to estimate the effect of parameter values (e.g. oxygen consumption rate), both of which are difficult to obtain in experiments

    Engaging IS Students Through Student Clubs and Chapters

    Get PDF
    Despite the presence of information technology (IT) in our consumer and professional lives, especially during the Covid-19 pandemic, and the increasing need for qualified IT workers to meet organizational demands for technology infrastructure and services, many Information Systems (IS) programs and departments struggle to attract and retain students. In this panel, we will examine solutions to this major problem through the lens of engaging students via clubs and chapters. We will discuss a) how student clubs can attract students to IS majors, b) how these organizations can support the professional development of their members, and c) how student groups can serve as a bridge between current students and alumni. Based on the experiences of the panelists, we propose that IS student clubs and chapters can be powerful allies to IS departments and faculty in helping to maintain or increase the vitality and footprint of IS programs in business schools

    Distinct Chemotaxis Protein Paralogs Assemble into Chemoreceptor Signaling Arrays To Coordinate Signaling Output

    Get PDF
    Most chemotactic motile bacteria possess multiple chemotaxis signaling systems, the functions of which are not well characterized. Chemotaxis signaling is initiated by chemoreceptors that assemble as large arrays, together with chemotaxis coupling proteins (CheW) and histidine kinase proteins (CheA), which form a baseplate with the cytoplasmic tips of receptors. These cell pole-localized arrays mediate sensing, signaling, and signal amplification during chemotaxis responses. Membrane-bound chemoreceptors with different cytoplasmic domain lengths segregate into distinct arrays. Here, we show that a bacterium, Azospirillum brasilense, which utilizes two chemotaxis signaling systems controlling distinct motility parameters, coordinates its chemotactic responses through the production of two separate membrane-bound chemoreceptor arrays by mixing paralogs within chemotaxis baseplates. The polar localization of chemoreceptors of different length classes is maintained in strains that had baseplate signaling proteins from either chemotaxis system but was lost when both systems were deleted. Chemotaxis proteins (CheA and CheW) from each of the chemotaxis signaling systems (Che1 and Che4) could physically interact with one another, and chemoreceptors from both classes present in A. brasilense could interact with Che1 and Che4 proteins. The assembly of paralogs from distinct chemotaxis pathways into baseplates provides a straightforward mechanism for coordinating signaling from distinct pathways, which we predict is not unique to this system given the propensity of chemotaxis systems for horizontal gene transfer

    Residuos De Metales TĂłxicos En Suelos AgrĂ­colas De Veredas Cercanas A Explotaciones Petroleras En TibĂș, Norte De Santander

    Get PDF
    Soil pollution is a serious environmental problem, involving environmental impacts of human activities on air and water, affecting those places where mineral extraction and concentration activities have developed, as well as industrial processes in which they appear as raw materials and waste. In the Americas, including Colombia, the contamination of soils by heavy metals is becoming increasingly important; From the beginning of this century, the determinations of metal concentrations in soils and pastures, especially cadmium, began to rise. The objective of the present work was to determine the concentrations of heavy metals Cu, Cd and Pb collected in sidewalks close to oil farms in soils, pastures and waters. The determination of the levels of these metals was performed by atomic absorption spectroscopy. The results were compared with the regulations of the European Union, since Colombia does not have its own regulations to compare the concentrations of these metals in the soil, pasture and animal drink water. The results obtained showed that the concentrations of Cu, Cd and Pb in the Village subject of this research were found above the limits allowed by the European Union, with the exception of Pb in the samples of waters andpastures of these Villages, in which the concentrations were found according to the norm.La contaminaciĂłn de los suelos debido a las actividades humanas ha tenido repercusiones ambientales graves sobre el aire y las aguas. De igual forma se ven afectados todos aquellos lugares en los que se desarrollan procesos de extracciĂłn y concentraciĂłn de minerales, asĂ­ como procesos industriales en donde los contaminantes aparecen como materias primas y residuos. En el continente Americano, incluyendo a Colombia, cada vez cobra mayor relevancia la contaminaciĂłn de suelos por metales pesados; desde comienzos del presente siglo empezaron a tomar auge las determinaciones de las concentraciones de los metales en suelos y pastos, especialmente del cadmio. El objetivo del presente trabajo fue determinar las concentraciones de los metales pesados Cu, Cd y Pb en muestras de suelos, pastos y aguas colectados en veredas cercanas a explotaciones petroleras. La determinaciĂłn de los niveles de esto metales se realizĂł por espectroscopia de absorciĂłn atĂłmica. Actualmente Colombia no cuenta con una normativa que permita comparar las concentraciones de estos metales en el suelo, pastos y aguas de bebida animal, por lo tanto, en el presente estudio se utilizĂł la normativa de la UniĂłn Europea como referencia. Los resultados obtenidos mostraron que las concentraciones de Cu, Cd y Pb, en las veredas objeto de esta investigaciĂłn, se encontraron por encima de los lĂ­mites permitidos por la UniĂłn Europea, a excepciĂłn del Pb en las muestras de suelo y pasto de estas veredas, en las cuales las concentraciones se encontraron de acuerdo a la norma

    Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss

    Get PDF
    The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68(−/−) mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68(−/−) mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68(−/−) mice. Sam68(−/−) bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68(+/+) and Sam68(−/−) littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68(−/−) mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68(−/−) mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice

    Effects of active and passive lacebacks on antero-posterior position of maxillary first molars and central incisors

    Get PDF
    The purpose of this study was to compare the effects of active and passive lacebacks on antero-posterior position of maxillary first molars and central incisors during leveling phase. Twenty-three subjects with Class I and Class II malocclusion were treated with first premolars extraction using preadjusted appliances (MBT 0.022-inch brackets). The leveling phase was performed with stainless steel archwires only. The sample was divided into 2 groups: 14 subjects received active lacebacks (Group 1) and 9 subjects received passive lacebacks (Group 2). Lacebacks were made from 0.008-inch ligature wire. Lateral cephalometric radiographs were taken pre- and post-leveling phase. Student's t-test was applied to determine the differences between pre- and post-leveling mean values and to determine the mean differences between groups. In Group I, the first molars showed a significant mesial movement, whereas no change was observed in Group 2. In both groups, maxillary central incisor crowns moved to lingual side. In conclusion, active laceback produced anchorage loss of maxillary first molars whereas passive laceback did not affect the position of these teeth. Active and passive lacebacks were effective in preventing central incisor proclination

    International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients

    Get PDF
    A century after its discovery, Chagas disease, caused by the parasite Trypanosoma cruzi, still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The polymerase chain reaction (PCR) has been proposed as a sensitive laboratory tool for detection of T. cruzi infection and monitoring of parasitological treatment outcome. However, high variation in accuracy and lack of international quality controls has precluded reliable applications in the clinical practice and comparisons of data among cohorts and geographical regions. In an effort towards harmonization of PCR strategies, 26 expert laboratories from 16 countries evaluated their current PCR procedures against sets of control samples, composed by serial dilutions of T.cruzi DNA from culture stocks belonging to different lineages, human blood spiked with parasite cells and blood samples from Chagas disease patients. A high variability in sensitivities and specificities was found among the 48 reported PCR tests. Out of them, four tests with best performance were selected and further evaluated. This study represents a crucial first step towards device of a standardized operative procedure for T. cruzi PCR.Fil: Schijman, Alejandro G. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Bisio, Margarita. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Orellana, Liliana. Universidad de Buenos Aires. Instituto de CĂĄlculo; Argentina.Fil: Sued, Mariela. Universidad de Buenos Aires. Instituto de CĂĄlculo; Argentina.Fil: Duffy, TomĂĄs. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Mejia Jaramillo, Ana M. Universidad de Antioquia. Grupo Chagas; Colombia.Fil: Cura, Carolina. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Auter, Frederic. French Blood Services; Francia.Fil: Veron, Vincent. Universidad de ParasitologĂ­a. Laboratorio Hospitalario; Guayana Francesa.Fil: Qvarnstrom, Yvonne. Centers for Disease Control. Department of Parasitic Diseases; Estados Unidos.Fil: Deborggraeve, Stijn. Institute of Tropical Medicine; BĂ©lgica.Fil: Hijar, Gisely. Instituto Nacional de Salud; PerĂș.Fil: Zulantay, InĂ©s. Facultad de Medicina; Chile.Fil: Lucero, RaĂșl Horacio. Universidad Nacional del Nordeste; Argentina.Fil: VelĂĄzquez, Elsa. ANLIS Dr.C.G.MalbrĂĄn. Instituto Nacional de ParasitologĂ­a Dr. Mario Fatala Chaben; Argentina.Fil: Tellez, Tatiana. Universidad Mayor de San Simon. Centro Universitario de Medicina Tropical; Bolivia.Fil: Sanchez Leon, Zunilda. Universidad Nacional de AsunciĂłn. Instituto de Investigaciones en Ciencias de la Salud; Paraguay.Fil: GalvĂŁo, Lucia. Faculdade de FarmĂĄcia; Brasil.Fil: Nolder, Debbie. Hospital for Tropical Diseases. London School of Tropical Medicine and Hygiene Department of Clinical Parasitology; Reino Unido.Fil: Monje Rumi, MarĂ­a. Universidad Nacional de Salta. Laboratorio de PatologĂ­a Experimental; Argentina.Fil: Levi, JosĂ© E. Hospital Sirio LibanĂȘs. Blood Bank; Brasil.Fil: Ramirez, Juan D. Universidad de los Andes. Centro de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a Tropical; Colombia.Fil: Zorrilla, Pilar. Instituto Pasteur; Uruguay.Fil: Flores, MarĂ­a. Instituto de Salud Carlos III. Centro de Mahahonda; España.Fil: Jercic, Maria I. Instituto Nacional De Salud. SecciĂłn ParasitologĂ­a; Chile.Fil: Crisante, Gladys. Universidad de los Andes. Centro de Investigaciones ParasitolĂłgicas J.F. Torrealba; Venezuela.Fil: Añez, NĂ©stor. Universidad de los Andes. Centro de Investigaciones ParasitolĂłgicas J.F. Torrealba; Venezuela.Fil: De Castro, Ana M. Universidade Federal de GoiĂĄs. Instituto de Patologia Tropical e SaĂșde PĂșblica (IPTSP); Brasil.Fil: Gonzalez, Clara I. Universidad Industrial de Santander. Grupo de InmunologĂ­a y EpidemiologĂ­a Molecular (GIEM); Colombia.Fil: Acosta Viana, Karla. Universidad AutĂłnoma de YucatĂĄn. Departamento de Biomedicina de Enfermedades Infecciosas y Parasitarias Laboratorio de BiologĂ­a Celular; MĂ©xico.Fil: Yachelini, Pedro. Universidad CatĂłlica de Santiago del Estero. Instituto de Biomedicina; Argentina.Fil: Torrico, Faustino. Universidad Mayor de San Simon. Centro Universitario de Medicina Tropical; Bolivia.Fil: Robello, Carlos. Instituto Pasteur; Uruguay.Fil: Diosque, Patricio. Universidad Nacional de Salta. Laboratorio de PatologĂ­a Experimental; Argentina.Fil: Triana Chavez, Omar. Universidad de Antioquia. Grupo Chagas; Colombia.Fil: Aznar, Christine. Universidad de ParasitologĂ­a. Laboratorio Hospitalario; Guayana Francesa.Fil: Russomando, Graciela. Universidad Nacional de AsunciĂłn. Instituto de Investigaciones en Ciencias de la Salud; Paraguay.Fil: BĂŒscher, Philippe. Institute of Tropical Medicine; BĂ©lgica.Fil: Assal, Azzedine. French Blood Services; Francia.Fil: Guhl, Felipe. Universidad de los Andes. Centro de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a Tropical; Colombia.Fil: Sosa Estani, Sergio. ANLIS Dr.C.G.MalbrĂĄn. Centro Nacional de DiagnĂłstico e InvestigaciĂłn en Endemo-Epidemias; Argentina.Fil: DaSilva, Alexandre. Centers for Disease Control. Department of Parasitic Diseases; Estados Unidos.Fil: Britto, Constança. Instituto Oswaldo Cruz/FIOCRUZ. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas; Brasil.Fil: Luquetti, Alejandro. LaboratĂłrio de Pesquisa de Doença de Chagas; Brasil.Fil: Ladzins, Janis. World Health Organization (WHO). Special Programme for Research and Training in Tropical Diseases (TDR); Suiza

    International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    Get PDF
    A century after its discovery, Chagas disease, caused by the parasite Trypanosoma cruzi, still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The polymerase chain reaction (PCR) has been proposed as a sensitive laboratory tool for detection of T. cruzi infection and monitoring of parasitological treatment outcome. However, high variation in accuracy and lack of international quality controls has precluded reliable applications in the clinical practice and comparisons of data among cohorts and geographical regions. In an effort towards harmonization of PCR strategies, 26 expert laboratories from 16 countries evaluated their current PCR procedures against sets of control samples, composed by serial dilutions of T.cruzi DNA from culture stocks belonging to different lineages, human blood spiked with parasite cells and blood samples from Chagas disease patients. A high variability in sensitivities and specificities was found among the 48 reported PCR tests. Out of them, four tests with best performance were selected and further evaluated. This study represents a crucial first step towards device of a standardized operative procedure for T. cruzi PCR

    Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

    Get PDF
    Fossil records indicate that life appeared in marine environments ∌3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land
    • 

    corecore