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Abstract

Background: Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in
the establishment of various plant-microbe associations, including those that benefit plant growth and crop
productivity. The motile soil bacterium Azospirillum brasilense colonizes the rhizosphere and promotes the growth of
diverse plants across a range of environments. Aerotaxis, or the ability to navigate oxygen gradients, is a widespread
behavior in bacteria. It is one of the strongest behavioral responses in A. brasilense and it is essential for successful
colonization of the root surface. Oxygen is one of the limiting nutrients in the rhizosphere where density and activity
of organisms are greatest. The aerotaxis response of A. brasilense is also characterized by high precision with motile
cells able to detect narrow regions in a gradient where the oxygen concentration is low enough to support their
microaerobic lifestyle and metabolism.

Results: Here, we present a mathematical model for aerotaxis band formation that captures most critical features of
aerotaxis in A. brasilense. Remarkably, this model recapitulates experimental observations of the formation of a stable
aerotactic band within 2 minutes of exposure to the air gradient that were not captured in previous modeling efforts.
Using experimentally determined parameters, the mathematical model reproduced an aerotactic band at a distance
from the meniscus and with a width that matched the experimental observation.

Conclusions: Including experimentally determined parameter values allowed us to validate a mathematical model
for aerotactic band formation in spatial gradients that recapitulates the spatiotemporal stability of the band and its
position in the gradient as well as its overall width. This validated model also allowed us to capture the range of
oxygen concentrations the bacteria prefer during aerotaxis, and to estimate the effect of parameter values (e.g.
oxygen consumption rate), both of which are difficult to obtain in experiments.

Keywords: Chemotaxis, Aerotaxis, Band formation, Azospirillum brasilense, Mathematical modeling

Background
Plant-microbe associations play a vital role in plant health
and crop productivity. The ability to detect and respond
to environmental changes in the vicinity of bacteria is
essential for their survival and growth. A variety of mech-
anisms have evolved by which cells sense their environ-
mental changes and respond appropriately. One of the
best characterized bacterial responses to changes in the
environment is chemotaxis, the ability of motile cells to
navigate chemical gradients [1]. In chemotaxis, motile
bacteria efficiently and rapidly respond to changes in
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the chemical composition of their environment, moving
towards regions with increasing concentrations of favor-
able chemicals (chemoattractants) and away from regions
with increasing concentration of unfavorable chemicals
(chemorepellents) by biasing their basal motility pattern.
Motility and the ability of bacteria to locate niches that
support optimum growth in the rhizosphere by chemo-
taxis is essential for their survival and enhances their
competitiveness in this environment [2, 3].
Aerotaxis is chemotaxis in an oxygen gradient. This bac-

terial behavior was first reported by Engelmann in 1881.
He observed the aggregation of an organism around air
bubbles [4, 5]. Beijerinck later confirmed Engelmann’s
finding and further described the formation of a sharp
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band of motile cells, corresponding to their accumula-
tion, around a source of oxygen [6]. He also observed
that the band of motile organisms descended when air
was replaced with oxygen and ascended when air was
replaced with hydrogen, implying that the organisms
moved towards a specific concentration of oxygen. The
preferred concentration of oxygen in a gradient has been
determined for a few motile bacterial species (reviewed
in [2]) including 200 μM for Bacillus subtilis (an obli-
gate aerobe), 50 μM for Escherichia coli (a facultative
anaerobe), 0.4 μM for Desulfovibrio vulgaris (an aerotol-
erant anaerobe), and 3-5 μM for Azospirillum brasilense
(a microaerobe).
There are two types of aerotaxis responses known to

date. In aerobes such as B. subtilismotile bacteria respond
directly to the oxygen concentration and accumulate at
the highest concentrations of oxygen in the gradient [7].
In other organisms, such as E. coli and A. brasilense, cells
perform aerotaxis not by sensing oxygen itself, but by
monitoring the effects that oxygen has on the metabolism
of the cells [8, 9]. This behavior is broadly referred to
as energy taxis [2]. In energy taxis-based aerotaxis, cells
do not move toward the greatest concentration of oxy-
gen but toward an intermediate concentration of oxygen
that supports maximum energy levels. The signal for this
type of behavior originates within the electron transport
system, where oxygen-mediated changes of the rate of
electron transport, redox status or protonmotive force are
detected during aerotaxis [2, 10].
Aerotaxis is a major behavioral response in A. brasilense

[11], characterized by a remarkable ability to precisely
locate niches where oxygen concentrations are low
and optimal to support metabolism. At such locations
motile cells form sharp bands (as seen in Fig. 1). A.
brasilense senses very high and low oxygen concentra-
tions as repellents and accumulates at intermediate con-
centrations, preferring about 5 μM dissolved oxygen
[10] (note that 1% of oxygen in air corresponds to 13

μM dissolved oxygen in water). Energy taxis guides A.
brasilense to move towards microenvironments optimal
for maximum energy generation and nitrogen fixation
[10, 12]. The location and width of a band are pri-
mary observable and measurable quantities in aerotaxis
experiments [13].
The motile soil bacterium Azospirillum brasilense col-

onizes the rhizosphere and promotes the growth of a
variety of plants across a range of environments. It is
2-3 μm long, with a single polar flagellum, [14]. When
the flagellum rotates counterclockwise (CCW), the cell
moves forward on a straight line, called a run. When the
flagellum rotates clockwise (CW), the cell moves back-
ward, and may also change direction, called a reversal.
The frequency of reversals determines whether the cell
moves away (when reversal frequency is low, so runs pre-
dominate) or remains nearby (when reversal frequency is
high).
A model of aerotactic band formation, incorporating

energy taxis, was developed by Mazzag et al. [15]. It
is based on earlier models for chemotaxis and aero-
taxis, which consider the movement of bacteria in one
dimension and distinguishes right- and left-moving cells
depending on their swimming direction to the oxygen
gradient. While the model [15] captured some of the fea-
tures of the aerotaxis response of A. brasilense, it failed to
produce a stable aerotactic band, which is typical of that
formed by A. brasilense.
Here, we use the same basic energy taxis model of

Mazzag et al., with some adjustments, enhanced numer-
ical implementation, and use experimentally measured
parameter values for A. brasilense (Table 1), to reca-
pitulate the aerotactic band formation in this species
(Fig. 2). We also present numerical simulations to pre-
dict how the A. brasilense aerotaxis band would respond
to changes in parameters (Table 2). Details on implemen-
tation and differences with [15] are given at the end of
Mathematical Model section.

Fig. 1 Images of aerotactic band formation of wild-type (Sp7) A. brasilense with 21% oxygen set at the meniscus. (a) At time 0 sec, when oxygen is
applied at the meniscus. (b) At time 50 sec. (c) At time 100 sec. (d) At time 140 sec, by which time the band has already stabilized. Scale bar is
500 μm in all panels
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Table 1 Parameter values for the aerotactic band formation
model

Parameter Description Value

Bo Total bacteria concentration 7 × 108 cells/ml

Co Oxygen concentration at the
meniscus

21%

D Oxygen Diffusion coefficient 2 × 103 μm2/s

K Bacteria oxygen consumption
rate

4 × 10−9 μMml/s cell

v Swimming speed 20 μm/s

Fmax,band maximum reversal frequency
inside the band

0.96/s

Fmax maximum reversal frequency
outside of band

0.65/s

Fmin minimum reversal frequency 0.35/s

̂Cmax Upper detectable oxygen
concentration

10%

Cmax Upper favorable oxygen
concentration

2%

Cmin Lower favorable oxygen
concentration

0.3%

̂Cmin Lower detectable oxygen
concentration

0.01%

S Length of the capillary 5 mm

The main objective is to validate the model, by showing
that it is capable of capturing experimental observations
not only qualitatively but also quantitatively.

Results
This section contains a series of computer simula-
tions of the mathematical model described in section
Mathematical Model.
The model consists of advection-reaction equations for

right-moving and left-moving bacteria in a capillary tube,
and a diffusion-reaction equation for oxygen, which dif-
fuses into the water from the meniscus and is consumed
by bacteria. The primary computed quantities are B(x, t)
and C(x, t), the bacteria and oxygen concentrations at
location x at time t, and the location of the left-side and
right-side of the band, found as FWHM (Full Width at
Half Maximum) from B(x, t) at each t. We plot the evolu-
tion of the band in time and profiles of B and C at desired
times, see Fig. 2a b. Some implementation details are given
in subsection Numerical Implementation.

Experimental validation on wild type A. brasilense
We present here results of simulations of actual experi-
ments with wild type (Sp7) A. brasilense grown in malate
(as carbon source). In all the simulations, bacteria formed
a stable aerotactic band. The location and width of the
band agree well with those measured for microaerophilic
A. brasilense cells in [10, 13].

Experimentally measured band location and width, for
cells inoculated into the spatial gradient at the density
determined by CFU counts, were respectively 407 ± 168
and 132±44 μm at time 300 s. Cell tracking yielded mean
values for speed v = 20μm/s, reversal frequency before
stimulation Fmin = 0.35 /s, reversal frequency inside the
band Fmax,band = 0.96 /s, and outside the band Fmax = 0.65
/s, at time 300 s.
Using these values in the model, we determined the

switch parameters ̂Cmax, Cmax, Cmin, ̂Cmin, which deter-
mine the forcing terms in the advection eqs. 1, 2 accord-
ing to 3 and 4 (see Mathematical Model), to capture
the experimentally measured band location and width.
Numerical simulation of themodel, with parameter values
listed in Table 1, produces band left and right sides at 340.3
and 472.1 μm, hence band location (midpoint) 406.2 and
width 131.8 μm. This is in remarkable agreement with the
measured values of 407 and 132 μm.
Shown in Fig. 2a is the band evolution up to 600 sec-

onds. Figure 2b shows profiles of bacterial density B at
times 50 s and 300 s, and of oxygen concentration C at
300 s. Note that the bacterial concentration B(x, t) is nor-
malized by the initial value Bo, so B = 1 is the initial
concentration (assumed uniform in the capillary). Simi-
larly, C(x, t) is normalized by Co, the oxygen at the menis-
cus. The rapid formation and stability of the band, seen in
Fig. 2a, captures well the experimental observations seen
in Fig. 2.
The values of the C-switches (̂Cmax, Cmax, Cmin, ̂Cmin)

are effective concentrations at which switching of reversal
frequencies occurs, creating a band. Their values cap-
ture the oxygen level the bacteria prefer during aerotaxis,
which is difficult to measure experimentally. In the above
simulation, the concentration of oxygen along the right-
side of the band is C = 0.09%, close to ̂Cmin = 0.01%.
Along the middle of the band, C = 0.88% is roughly half-
way between Cmin = 0.3% and Cmax = 2%. And along the
left-side, closer to the meniscus, C = 2.85% is just above
Cmax. Thus here the band forms in the oxygen range from
0.09% to 2.85%, which corresponds to 1.2 to 37 μM dis-
solved oxygen. The earlier estimate of 3 – 5 μM [2] for
preferred oxygen is very rough. It was determined first
using microelectrodes that had a sensitivity limit of 1%
oxygen [10]. A complimentary method used a gas pro-
portioner to control the oxygen concentration in a gas
mixture flowing into a gas chamber in which the capillary
tubes were placed. The front of the band was adjacent to
the meniscus when the oxygen concentration, determined
by the gas proportioner, was 0.5% and the band dissi-
pated and disappeared at oxygen concentrations lower
than 0.05% in the gas mixture. While the method pro-
vided approximate numbers on oxygen concentrations, it
is neither sensitive nor accurate. Furthermore, one would
expect that manipulating the oxygen concentration in the
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Fig. 2 Aerotactic band formation predicted by the model. Top row: With parameters of Table 1. The band forms and stabilizes within a minute, and
remains steady, exactly as observed in experiments. Band location and width are 406 μm and 132 μm, in excellent agreement with the
experimentally measured values of 407 and 132 μm. Bottom row: With parameter values taken from Mazzag et al. [15]. The band is moving (not
steady); location and width are 1517 and 185 μm at 300 s, but 1760 and 186 μm at 600 s. (a),(c): Band evolution in time: Left (blue) and Right (red)
sides of the band. Note the different scales on x-axis. (b),(d): Profiles of (normalized) bacteria concentration (B) at time 50 s (blue) and 300 s (red), and
of Oxygen concentration (C) at 300 s (green). Note the different scales on both axes

gas mixture flowing into the cell would affect the aerotaxis
response and bias the outcome. Thus, the oxygen range
we obtained here via the model appears reasonable.
A simulation using parameter values from Mazzag et

al. [15] produces a band that keeps moving over time
and does not stabilize, shown in Fig. 2c d. The param-
eters that differ from those in Table 1, are: Bo=1 ×
108 cells/ml, K=1 × 10−9 μM ml /s/cell, v=40 μm/s,
Fmax=0.5/s, Fmin=0.1/s, ̂Cmax=5%, Cmax=0.5%, and also
the (Henry’s Law) factor for conversion of oxygen% in
air to μM dissolved oxygen in water: 1200 μM whereas
we use factor 1300. Crucial parameters for getting a sta-
ble band are K, Bo, C-switches. Further replacing other
parameters with ours eventually leads to Fig. 2a b that
matches experimental measurements.
It should be noted that the model is capable of produc-

ing a great variety of band behaviors: wavy sides / smooth
but moving / steady but not smooth / steady and smooth,

at various locations, with various widths, all depending
on combinations of parameters. No single parameter can
account for any particular effect. Unwildly band behavior
is not normally observed in experiments, so if they arise
during simulations they are deemed unphysical, indicating
poor parameters.
Parameter idendification is an “ill-posed” problem

mathematically, typically uniqueness of solution and/or
continuous dependence on data break down. Neverthe-
less, seeking C-switches to match both location and width
of the experimentally measured band seems to constrain
the system to have unique solution or no solution. In our
extensive simulations we are able to find either only one
combination or none at all.

Band sensitivity on parameters
Having validated the model on experimental data, we
present parametric studies on the main parameters Bo,
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Table 2 Sensitivity of band location and width on parameters. Only one parameter is varied at a time, with all others at their base
values as in Table 1. For ease of comparison, base value of each parameter is listed, which produces location 406, width 132 μm. The %
changes are relative to base values. Columns 4 and 6 show sensitivity of location and width on each parameter. “Bpeak” in column 7 is
the maximum bacterial concentration at 300 s (normalized by the initial concentration Bo). “Smoothness” in column 8 refers to the
appearance of left- and right-side of band location vs time, as seen in Fig. 2

Parameter % change Location(μm) % change Width(μm) % change Bpeak Smoothness

Bo = 1 × 109 cells/ml +50% 352 −13% 114 −14% 2.6 Smooth

Bo = 7 × 108 cells/ml base value 406 – 132 – 2.9 Smooth

Bo = 3 × 108 cells/ml −50% 582 +43% 156 +18% 3.9 Smooth

Co=30% +50% 527 +30% 122 −8% 3.2 ∼smooth

Co=21% base value 406 – 132 – 2.9 Smooth

Co=10% −50% 227 −44% 133 1% 2.6 smooth>220s

D = 2.5 × 103 μm2/s +25% 449 +11% 140 +6% 3.1 Smooth

D = 2.0 × 103 μm2/s base value 406 – 132 – 2.9 Smooth

D = 1.5 × 103 μm2/s −25% 359 −12% 114 −13% 2.7 Smooth>200s

K = 6 × 10−9 μMml/s/cell +50% 344 −15% 114 −14% 2.6 Smooth>100s

K = 4 × 10−9 μMml/s/cell base value 406 – 132 – 2.9 Smooth

K = 2 × 10−9 μMml/s/cell −50% 547 +32% 149 +13% 3.7 Smooth>110s

v= 30 μm/s +50% 429 +6% 144 +9% 2.4 ∼smooth

v= 20 μm/s Base value 406 – 132 – 2.9 Smooth

v= 10 μm/s −50% 382 −6% 98 −26% 4.2 Smooth>200s

Fmax= 0.85 /s +30% 387 −5% 125 −5% 3.5 Smooth

Fmax= 0.65 /s Base value 406 – 132 – 2.9 Smooth

Fmax= 0.45 /s −30% 445 +10% 133 0% 1.9 ∼smooth

Fmin= 0.45 /s +30% 426 +5% 141 +7% 2.4 Smooth

Fmin= 0.35 /s Base value 406 – 132 – 2.9 Smooth

Fmin= 0.25 /s −30% 387 −5% 117 −11% 3.5 Smooth

Cmax= 3% +50% 383 −6% 159 +21% 2.6 ∼smooth

Cmax= 2% Base value 406 – 132 – 2.9 Smooth

Cmax= 1% −50% 457 +13% 94 −29% 3.4 ∼smooth

Cmin= 0.45% +50% 391 −4% 115 −13% 3.2 Smooth

Cmin= 0.3% Base value 406 – 132 – 2.9 Smooth

Cmin= 0.15% −50% 437 +8% 148 +12% 2.5 ∼smooth

̂Cmax= 15% +50% 402 −1% 126 −5% 3.2 Smooth>120s

̂Cmax= 10% Base value 406 – 132 – 2.9 Smooth

̂Cmax= 5% −50% 418 +3% 125 −6% 2.4 ∼smooth

̂Cmin= 0.015% +50% 406 0% 132 0% 2.9 Smooth

̂Cmin= 0.010% Base value 406 – 132 – 2.9 Smooth

̂Cmin= 0.005% −50% 406 0% 132 0% 2.9 Smooth

Co, K, v, Fmax, Fmin, and on the C-switches: ̂Cmax, Cmax,
Cmin, ̂Cmin, to see how increasing or decreasing each one
affects the band location and width, and by how much.
The results are listed in Table 2.
For ease of comparison, the base value (from Table 1)

of each parameter is listed, that produces location 406,
width 132 μm. Only one parameter is varied at a time,
with all others at their base values. The % changes are

relative to base values. It should be noted that the sen-
sitivities shown in Table 2 are local about the base
values. They may be different about some other base
state.
In the following subsections we discuss some of the rows

in Table 2 to point out the meaning of the entries. Sim-
ilar considerations apply to the rest of the parameters in
Table 2.
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Effect of bacterial density Bo
Band location and width depend strongly on the total
bacteria density. Inreasing Bo by 50% of base value to
1 × 109 cells/ml, the band formed closer to the menis-
cus, at 352 μm (−13% change), with narrower width (114
μm, −14% change). The maximum of the bacterial dis-
tribution in the band (Bpeak, in column 7), is now 2.6,
meaning 2.6 × Bo, a bit lower than the 2.9 peak of the
base case. The entry “smooth” in column 8 refers to the
shape of band sides in a plot like Fig. 2a. Changing Bo
by −50% to Bo = 3 × 108 cells/ml, the band formed
much further (at 582μm,+43% change), with wider width
(156 μm, +18% change). Thus, band position and width
are both decreasing functions of Bo, with location being
affected more strongly than width, especially at lower
Bo. These are in agreement with general experimental
observations.

Effect of Oxygen at the capillary opening, Co
Band location depends strongly on the oxygen concentra-
tion at the meniscus opening, which affects the oxygen
gradient into the capillary.WhenCo was increased to 30%,
the band formed much further, at 527 μm (+30% change),
but with narrower width 122μm (−8% change). The entry
“∼smooth” in column 8 means the band sides are mostly
smooth but with a few step-likemovements.WhenCo was
halved to 10%, the band formedmuch closer to the menis-
cus, at 227 μm (−44% change), with unchanged width.
The entry “smooth>220s” means the band sides show
some step-like movements early on and become smooth
after time 220s. Thus, band position is an increasing func-
tion of Co, but band width is little affected by Co. The
effect of increasing/decreasing Co on band location is as
one would expect: increasingCo raises the oxygen concen-
tration profile C(x), so the switch values Cmax, Cmin and
the band occur further to the right.

Effect of consumption rate K
Band location and width depend considerably on oxy-
gen consumption rate, as is to be expected. When K was
increased by 50% to K = 6 × 10−9μMml/s cell, the band
formed closer to the meniscus at 344 μm (−15% change),
with narrower width 114 μm (−14% change). When K
was decreased 50% to K = 2 × 10−9μMml/s cell, the
band formed much further away, at 547 μm, a consider-
able change of+32%. It had wider width of 149μm (+13%
change). Thus, band position and width are decreasing
functions of oxygen consumption rate K, with location
being affected much more than the width. Again, the
predicted behavior aligns with experimental observations.

Discussion
The ability to navigate gradients of oxygen is key to
regulate metabolic activities of bacteria with a range of

lifestyles. It is thus not surprising to observe that aerotaxis
is a widespread behavior in bacteria and Archaea [2].
Several mathematical models have been developed to

recapitulate the movement of bacteria in oxygen gradi-
ents. The models developed for bacteria that track higher
concentrations of oxygen such as B. subtilis [16] or which
prefer lower oxygen concentrations such as Desulfovib-
rio desulfuricans [17] are not appropriate for A. brasilense
because the aerotaxis strategy of these organisms is dis-
tinct. B. subtilis detects oxygen directly and navigates
toward elevated oxygen concentrations while D. desul-
furicans is a strict anaerobe that forms a band at the
oxic-anoxic interface with the band being far less stable
than that observed for A. brasilense.
When we attempted to use the previously developed

model for A. brasilense aerotaxis band formation by Maz-
zag et al. [15], we could not produce a stable aerotactic
band, despite this feature being characteristic of the A.
brasilense aerotaxis response [10, 11]. The model and
experimental values used here provide a robust model that
captures all significant features of A. brasilense aerotaxis
band formation.
Our model predicts that cell density (Bo), oxygen con-

centration at the meniscus (Co), and oxygen consumption
rate (K) have significant effect on the location of the
aerotactic band, but speed does not. On the other hand,
width of the band is most sensitive to cell density (Bo)
and speed (v), but not to Co. In addition to experimental
data validating at least some of these observations here,
Barak et al. [18] demonstrated that increasing the oxygen
concentration available at the capillary opening delayed
band formation, and led to an increase in the number
of attracted bacteria to the band, i.e., the band became
thicker over time.
The tight aerotactic band formed byA. brasilense in gra-

dients of oxygen depends on the abilty to sense oxygen
as both an attractant and a repellent. A. brasilense senses
very low or very high oxygen concentrations as repellents
and motile cells navigate the gradients to stay away from
these two strong repellents to locate themselves where
oxygen is an attractant [10]. These opposing behaviors are
captured in the model described here and by our experi-
mental data indicating a very high probability of reversal
in swimming direction for cells within the band.
Determining the C-switch values computationally, cap-

tures the narrow range of oxygen concentrations the
bacteria prefer to congregate in, forming an aerotac-
tic band. As this is difficult to do reliably in experi-
ments, it is a major advantage of the model and approach
described here. In the validated model the band forms
between 1.2 and 37 μM dissolved oxygen. Given our
findings and observed effects of respiration rates and
density, we expect this range to vary with experimental
conditions.
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One would expect fluid mixing induced by swimming
cells to increase the diffusion coefficient of oxygen in
water; the issue is how significant it would be. In a rather
thorough paper on the subject, Kasyap et al. [19] esti-
mated the hydrodynamic diffusivity induced by swimming
bacteria, and conclude that “bacteria induced mixing is
irrelevant for small molecules”. Indeed, their formula for
hydrodynamic diffusivity (for oxygen, using our parame-
ter values) yields 0.7 μm2/s inside the band and 0.9 μm2/s
outside the band. These are indeed negligible compared
to the molecular diffusivity D = 2000μm2/s of oxygen in
water.
Motivated by this question, in Table 2 we examine the
effect of a large ±25% change in D to gauge uncer-
tainty. It turns out that a large +25% increase of D would
result in a rather modest +10% increase in band location,
and would have no effect on width. (The case of −25%
change is included for completeness, it is not expected
to arise).

Conclusions
A mathematical model for aerotaxis band formation was
presented and validated on experimental data for Azospir-
illum brasilense. A spatial gradient assay for aerotaxis
and cell tracking provide values for swimming speed
and reversal frequencies, which are parameters in the
model. Four other model parameters (that cannot be
measured experimentally) were determined computation-
ally so as to match measured band location and width.
With these parameters, the model captures all signifi-
cant features of A. brasilense aerotaxis band formation.
The simulation reveals that wild-type Sp7 A. brasilense
forms the band in the range of 1.2 to 37 μM dissolved
oxygen.
Parametric studies predict that band location depends

strongly on cell density (Bo), oxygen concentration at the
meniscus (Co), and oxygen consumption rate (K), but not
on swimming speed (v). On the other hand, width of the
band is most sensitive to Bo, v, and K, but not to Co.

Methods
Strain growth conditions
The motile soil alphaproteobacterium A. brasilense
strain Sp7 ([20]) was used in these experiments. A.
brasilense cells were routinely grown in liquid MMAB
(Minimal Medium for Azospirillum brasilense [21]),
supplemented with malate (10 mM) and ammonium
chloride (18.7 mM), as previously described [14]. For
Colony Forming Units (CFU) counts, liquid cultures
were grown to the desired optical density at 600
nm (OD600). One ml aliquots were taken and seri-
ally diluted 10-fold and plated on TY medium (Tryp-
tone 10 g/l, Yeast Extract 5 g/l) with ampicillin
(200 μg/ml).

Spatial gradient assay for aerotaxis
Cells were grown to an OD600 of 0.4 - 0.6 (exponential
phase of growth) in MMAB supplemented with malate
and ammonium. Cultures were washed 3 times with
chemotaxis buffer and standardized to an OD600 of 0.5
[22]. One ml of this culture of motile cells were gen-
tly washed with sterile chemotaxis buffer by centrifu-
gation (5000 rpm for 3 minutes) and resuspended in
100 μl chemotaxis buffer containing malate. Over 95%
of cells remained motile under these conditions. Cells
were transferred to an optically flat microcapillary tube
(inner dimensions 0.1×2×50 mm, Vitro Dynamics, Inc.,
Rockaway, NJ) by immersing a capillary tube into the sus-
pension of motile cells. The cells were equilibrated in a
gas perfusion chamber with N2 gas for 3 minutes, then
air (21% oxygen) was introduced, and aerotactic band for-
mation was visualized under a light microscope at 4×
magnification, and videotaped at 30 fps. Upon formation
of a stable band [13], band location was measured at mid-
height of the capillary from (surface of) the meniscus to
center of the band; band width was also measured at the
same mid-height. Time to stable band formation was also
measured.
Snapshots of band formation in such a spatial gradient

assay are shown in Fig. 1. The band forms very fast and
stabilizes within a couple of minutes.

Single cell tracking
To determine the swimming reversal frequency and swim-
ming speed of cells within and outside the aerotactic
band, a digital recording (at 40× magnification) of the
aerotactic band formed by wild type strains under the
conditions described above was analyzed using CellTrak
(Santa Rosa, CA), following the procedure described in
[11]. A minimum of 100 individual tracks were analyzed
and the average values as well as minimum and maximal
values were determined from these data sets and used for
mathematical modeling.

Mathematical Model
Various modeling approaches for chemotaxis exist: Ordi-
nary Differential Equation (ODE) models for signaling
pathways [23–25]; Partial Differential Equation (PDE)
models of various types for chemotactic movement,
most commonly Keller-Segel type models [26]; stochas-
tic models of various types [27–29]; and agent-based
models [30, 31].
The most extensively studied mathematical models for

chemotaxis are Keller-Segel type models, named after the
1971 work of Evelyn Keller and Lee Segel [26], even
though similar models were derived already by C.S. Pat-
lak in 1953 [32]. Such models describe evolution of
bacterial density by a parabolic PDE involving an anti-
diffusion “chemotaxis term” proportional to the gradient
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of the chemoattractant, thus allowing movement up-the-
gradient, the most prominent feature of chemotaxis. It
has been shown that in 2 and higher (space) dimen-
sions, under certain conditions, finite-time blow-up may
occur which is clearly unphysical (sometimes interpreted
as “overcrowding”) [33]. An excellent summary of mathe-
matical results on Keller-Segel models up to 2004 can be
found in [34, 35].
The type of model employed here was initially formu-

lated for chemotaxis by Lee Segel [36, 37], and it is more
physical (and more "primitive", in the sense that under
appropriate assumptions it reduces to the Keller-Segel
model). It was adapted for aerotaxis by Mazzag et al. [15]
to model energy taxis [10, 11, 38]. A great advantage of
the model is that it incorporates experimentally measur-
able parameters, namely swimming speed and reversal
frequencies, as it will be described below. While [15] cap-
tured some of the features of the aerotaxis response of
A. brasilense, it failed to produce a stable (not moving)
aerotactic band, which is typical of that formed by A.
brasilense.
Below, we present in full detail the basic mathemati-

cal model, which is a somewhat simplified version of [15],
and then we mention some features of our numerical
implementation.

Swimming of the Bacteria
We formulate a system of partial differential equations
that describe movement of bacteria whose reversal fre-
quency is regulated by local oxygen concentration. We
consider one-dimensional movement (along the x-axis) in
an interval 0 ≤ x ≤ S. The advection terms describe

the directed swimming of bacteria with speed v, while
the reaction terms denote the turning of bacteria at fre-
quencies fRL and fLR. R(x, t) and L(x, t) are the number
(densities) of right-moving and left-moving bacteria at
position x and time t, respectively.

∂R(x, t)
∂t

+ v
∂R(x, t)

∂x
= −fRL R(x, t) + fLR L(x, t), (1)

∂L(x, t)
∂t

− v
∂L(x, t)

∂x
= +fRL R(x, t) − fLR L(x, t), (2)

where v is the (constant) swimming speed, fRL and fLR
are the probabilities with which bacteria reverse their
direction from to Right to Left and from Left to Right,
respectively, given by

fRL =
{

Fmax if ̂Cmin < C < Cmax ,
Fmin if C < ̂Cmin or C > Cmax ,

(3)

fLR =
{

Fmax if Cmin < C < ̂Cmax ,
Fmin if C < Cmin or C > ̂Cmax .

(4)

Here Fmax and Fmin are maximum and minimum reversal
frequencies, respectively, and ̂Cmin < Cmin < Cmax <
̂Cmax are specified switch values of oxygen concentration
C at which frequencies change from low Fmin to high Fmax
and vice versa. The formulae are depicted in Fig. 3.
In our implementation, we actually use different values

for Fmax inside and outside the band, which are found
experimentally, see Table 1. The concentration of bacteria,
B(x, t), is the total number of right- and left-moving cells:

B(x, t) = R(x, t) + L(x, t). (5)

Cell reproduction is much slower than band formation
time-scale and it is ignored. Initially, R(x, 0) = Ro(x)

C min C max C_maxC_min

f

F

C

reversal
frequency

f_LR

f_RL

^^

Fig. 3 Reversal frequency of right swimming (solid line) and left swimming (dashed line) cells, depicting formulas (3) and (4), for setting fRL and fLR in
the model
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and L(x, 0) = Lo(x) in [ 0 , S], for some initial distribu-
tions Ro(x) and Lo(x). At the left boundary all left-moving
cells turn to the right, and at the right boundary all right-
moving cells turn to the left: R(0, t) = L(0, t) and
R(S, t) = L(S, t). These boundary conditions ensure that
there is no depletion of bacteria, thus the total number of
bacteria in the capillary [ 0 , S] remains constant and equal
to the initial number

∫ S

0
B(x, t)dx = const. = Bo = Ro + Lo. (6)

Diffusion of Oxygen
The oxygen concentration C(x, t) in the capillary [ 0, S] is
determined by a diffusion-reaction equation that accounts
for the consumption of oxygen by the bacteria:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2
− K θ(C(x, t))B(x, t) , (7)

where B(x, t) is the concentration of bacteria (Eq. 5), K is
the rate of consumption of oxygen by bacteria, and D is
diffusion coefficient of oxygen in water. To ensure there is
no consumption after oxygen depletion, θ(C) is set as

θ(C(x, t)) =
{

1 if C(x, t) > 0,
0 if C(x, t) ≤ 0. (8)

Initially there is no oxygen in the capillary, so the initial
condition is

C(x, 0) = 0 for all 0 ≤ x ≤ S. (9)

At the open end x = 0 the oxygen concentration is a spec-
ified value Co, while the other end of the capillary is sealed
(with wax) to prevent oxygen from entering or leaving.
Thus the boundary conditions at x = 0 and x = S are

C(0, t) = Co ,
∂C(x, t)

∂x
= 0 at x = S . (10)

Numerical Implementation
The system of partial differential eqs. (1), (2), (7) was
undimensionalized and solved numerically in Fortran 90.
The advection equations were discretized with an upwind
Finite Volume scheme and forward Euler time discretiza-
tion. The diffusion equation was also discretized by Finite
Volumes with forward Euler time discretization.
In the simulations, we used capillary length S = 5 mm,

which is already far away from where the band forms and
does not affect the numerical results. The capillary, occu-
pying the interval [ 0, S] was discretized into 640 control
volumes (128 permm), and the time-step was chosen judi-
ciously and adaptively to ensure numerical stability and
non-negative concentrations.
We note here some features in our implementation and

differences with Mazzag et al. [15].
(1) In conformance with measurements, reversal fre-

quency is higher inside the band instead of lower. Thus

Fig. 3 is a “flipped” version of Fig. 2c in [15].
(2) Reversal frequencies are applied separately inside the
band and outside the band (different values for Fmax may
be used inside and outside the band). This was motivated
by experimental measurements, and necessitated calcula-
tion of band location at each time-step in the numerical
implementation. The band is calculated from the bacterial
distribution B(x, tn) at each time-step tn, as FWHM (Full
Width at Half Maximum), a common practice in many
fields. This is done by intersecting the density profile by a
horizontal line at half-maximum to determine the left side
(xL) and right side (xR) of the band at time tn, which are
plotted in Fig. 2a.
(3) In the simulations we use much finer space grid
(128/mm instead of 40/mm used in [15]) which noticeably
affects the calculated band location.
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