3 research outputs found

    The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases.

    Get PDF
    26 pagesInternational audienceThe widespread use of artificial nestboxes has led to significant advances in our knowledge of the ecology, behaviour and physiology of cavity nesting birds, especially small passerines. Nestboxes have made it easier to perform routine monitoring and experimental manipulation of eggs or nestlings, and also repeatedly to capture, identify and manipulate the parents. However, when comparing results across study sites the use of nestboxes may also introduce a potentially significant confounding variable in the form of differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained. However, the use of nestboxes may also introduce an unconsidered and potentially significant confounding variable due to differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained. Here we review to what extent the characteristics of artificial nestboxes (e.g. size, shape, construction material, colour) are documented in the ‘methods' sections of publications involving hole-nesting passerine birds using natural or excavated cavities or artificial nestboxes for reproduction and roosting. Despite explicit previous recommendations that authors describe in detail the characteristics of the nestboxes used, we found that the description of nestbox characteristics in most recent publications remains poor and insufficient. We therefore list the types of descriptive data that should be included in the methods sections of relevant manuscripts and justify this by discussing how variation in nestbox characteristics can affect or confound conclusions from nestbox studies. We also propose several recommendations to improve the reliability and usefulness of research based on long-term studies of any secondary hole-nesting species using artificial nestboxes for breeding or roosting

    Interaction of climate change with effects of conspecific and heterospecific density on reproduction

    No full text
    Abstract We studied the relationship between temperature and the coexistence of great tit Parus major and blue tit Cyanistes caeruleus, breeding in 75 study plots across Europe and North Africa. We expected an advance in laying date and a reduction in clutch size during warmer springs as a general response to climate warming and a delay in laying date and a reduction in clutch size during warmer winters due to density‐dependent effects. As expected, as spring temperature increases laying date advances and as winter temperature increases clutch size is reduced in both species. Density of great tit affected the relationship between winter temperature and laying date in great and blue tit. Specifically, as density of great tit increased and temperature in winter increased both species started to reproduce later. Density of blue tit affected the relationship between spring temperature and blue and great tit laying date. Thus, both species start to reproduce earlier with increasing spring temperature as density of blue tit increases, which was not an expected outcome, since we expected that increasing spring temperature should advance laying date, while increasing density should delay it cancelling each other out. Climate warming and its interaction with density affects clutch size of great tits but not of blue tits. As predicted, great tit clutch size is reduced more with density of blue tits as temperature in winter increases. The relationship between spring temperature and density on clutch size of great tits depends on whether the increase is in density of great tit or blue tit. Therefore, an increase in temperature negatively affected the coexistence of blue and great tits differently in both species. Thus, blue tit clutch size was unaffected by the interaction effect of density with temperature, while great tit clutch size was affected in multiple ways by these interactions terms
    corecore