19 research outputs found

    Comparison of Aqwa, GL Rankine, Moses, Octopus, PDStrip and Wamit with model test results for cargo ship wave-induced motions in shallow water

    Get PDF
    A benchmarking study is carried out concerning wave induced ship motions in shallow water, predicted with commercially available codes AQWA, GL Rankine, MOSES, OCTOPUS, PDStrip and WAMIT. Comparison is made with experiments for three cargo ship models tested at Flanders Hydraulics Research. The same IGES models of the ship hulls were used in all codes to ensure consistent representation of the model geometry. The comparisons may be used to assess the suitability of each code for zero-speed applications such as berthed ship motions and under-keel clearance, as well as forward-speed applications such as under-keel clearance in navigation channels. Another, quickly developing, application area that requires analysis of seaway-induced ship motions in shallow water, is analysis of motions, accelerations and loads on cargo transport, installation and service vessels for offshore wind parks

    Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials

    Get PDF
    YesFundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments
    corecore