13 research outputs found

    The Synthetic Potential of Fungal Feruloyl Esterases : A Correlation with Current Classification Systems and Predicted Structural Properties

    Get PDF
    Twenty-eight fungal feruloyl esterases (FAEs) were evaluated for their synthetic abilities in a ternary system of n-hexane: t-butanol: 100 mM MOPS-NaOH pH 6.0 forming detergentless microemulsions. Five main derivatives were synthesized, namely prenyl ferulate, prenyl caffeate, butyl ferulate, glyceryl ferulate, and l-arabinose ferulate, offering, in general, higher yields when more hydrophilic alcohol substitutions were used. Acetyl xylan esterase-related FAEs belonging to phylogenetic subfamilies (SF) 5 and 6 showed increased synthetic yields among tested enzymes. In particular, it was shown that FAEs belonging to SF6 generally transesterified aliphatic alcohols more efficiently while SF5 members preferred bulkier l-arabinose. Predicted surface properties and structural characteristics were correlated with the synthetic potential of selected tannase-related, acetyl-xylan-related, and lipase-related FAEs (SF1-2, -6, -7 members) based on homology modeling and small molecular docking simulations.Peer reviewe

    Fungal glucuronoyl esterases : Genome mining based enzyme discovery and biochemical characterization

    Get PDF
    4-O-Methyl-d-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy. BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl d-glucuronate demonstrating the suitability of our genome mining strategy for enzyme discovery.4-O-Methyl-D-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy. BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl D-glucuronate demonstrating the suitability of our genome mining strategy for enzyme discovery.Peer reviewe

    Fungal feruloyl esterases: Functional validation of genome mining based enzyme discovery including uncharacterized subfamilies

    Get PDF
    Feruloyl esterases (FAEs) are a diverse group of enzymes that specifically catalyze the hydrolysis of ester bonds between a hydroxycinnamic (e.g. ferulic) acid and plant poly- or oligosaccharides. FAEs as auxiliary enzymes significantly assist xylanolytic and pectinolytic enzymes in gaining access to their site of action during biomass saccharification for biofuel and biochemical production. A limited number of FAEs have been functionally characterized compared to over 1000 putative fungal FAEs that were recently predicted by similarity-based genome mining, which divided phylogenetically into different subfamilies (SFs). In this study, 27 putative and six characterized FAEs from both ascomycete and basidiomycete fungi were selected and heterologously expressed in Pichia pastoris and the recombinant proteins biochemically characterized to validate the previous genome mining and phylogenetical grouping and to expand the information on activity of fungal FAEs. As a result, 20 enzymes were shown to possess FAE activity, being active towards pNP-ferulate and/or methyl hydroxycinnamate substrates, and covering 11 subfamilies. Most of the new FAEs showed activities comparable to those of previously characterized fungal FAEs.Peer reviewe

    Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective

    Get PDF
    High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection. The European Lead Factory (ELF) project is addressing this challenge by leveraging the diverse experience and know-how of academic groups and small and medium enterprises (SMEs) engaged in synthetic and/or medicinal chemistry. Here, we describe the novelty, diversity, structural complexity, physicochemical characteristics and overall attractiveness of this first batch of ELF compounds for HTS purposes

    Optimized Enzymatic Synthesis of Feruloyl Derivatives Catalyzed by Three Novel Feruloyl Esterases from Talaromyces wortmannii in Detergentless Microemulsions

    No full text
    Three novel feruloyl esterases (Fae125, Fae7262 and Fae68) from Talaromyces wortmannii overexpressed in the C1 platform were evaluated for the transesterification of vinyl ferulate with two acceptors of different size and lipophilicity (prenol and L-arabinose) in detergentless microemulsions. The effect of reaction conditions such as the microemulsion composition, the substrate concentration, the enzyme load, the pH, the temperature and the agitation were investigated. The type A Fae125 belonging to the subfamily 5 (SF5) of phylogenetic classification showed highest yields for the synthesis of both products after optimization of reaction conditions: 81.8% for prenyl ferulate and 33.0% for L-arabinose ferulate. After optimization, an 8-fold increase in the yield and a 12-fold increase in selectivity were achieved for the synthesis of prenyl ferulate

    Synthesis of antioxidants with free and immobilised fungal feruloyl esterases

    No full text
    Feruloyl esterases (FAEs, E.C. 3.1.1.73, CAZy family CE1) are enzymes that are secreted by a wide range of fungi and bacteria as part of the enzymes hydrolysing plant biomass. Under conditions of low water content, FAEs can also carry out (trans)esterification reactions. Thus, their potential use as biocatalysts for the production of antioxidants with applications in food, cosmetic and pharmaceutical industries has been investigated in recent years. We characterised the biosynthetic potential of four new FAE enzymes from a thermophilic fungus. We focused on optimizing reaction conditions for the synthesis of ferulate esters with improved hydrophobic or hydrophilic properties; prenyl ferulate and 5-O-(trans-feruloyl)-arabinofuranose, respectively. In addition to using free enzymes, we also immobilised them on the mesoporous silica material SBA-15 with pore sizes ranging from 7 to 10 nm, to improve the esterification-to-hydrolysis ratio of the enzymes. It has been shown previously that immobilisation renders enzymes more resilient to adverse conditions and increases their productive life time [1]. Furthermore, immobilisation may also result in a decrease of unwanted side reactions (hydrolysis of transesterification) [2]. In agreement with that, we achieved a higher product yield with immobilised enzymes compared to free enzymes. The immobilised biocatalysts are also more easily re-usable for several production cycles, thus lowering production costs

    Evolution of the feruloyl esterase MtFae1a from Myceliophthora thermophila towards improved catalysts for antioxidants synthesis

    Get PDF
    International audienceThe chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity

    The Synthetic Potential of Fungal Feruloyl Esterases : A Correlation with Current Classification Systems and Predicted Structural Properties

    No full text
    Twenty-eight fungal feruloyl esterases (FAEs) were evaluated for their synthetic abilities in a ternary system of n-hexane: t-butanol: 100 mM MOPS-NaOH pH 6.0 forming detergentless microemulsions. Five main derivatives were synthesized, namely prenyl ferulate, prenyl caffeate, butyl ferulate, glyceryl ferulate, and l-arabinose ferulate, offering, in general, higher yields when more hydrophilic alcohol substitutions were used. Acetyl xylan esterase-related FAEs belonging to phylogenetic subfamilies (SF) 5 and 6 showed increased synthetic yields among tested enzymes. In particular, it was shown that FAEs belonging to SF6 generally transesterified aliphatic alcohols more efficiently while SF5 members preferred bulkier l-arabinose. Predicted surface properties and structural characteristics were correlated with the synthetic potential of selected tannase-related, acetyl-xylan-related, and lipase-related FAEs (SF1-2, -6, -7 members) based on homology modeling and small molecular docking simulations

    Fungal glucuronoyl esterases : Genome mining based enzyme discovery and biochemical characterization

    No full text
    4-O-Methyl-d-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy. BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl d-glucuronate demonstrating the suitability of our genome mining strategy for enzyme discovery
    corecore