1,225 research outputs found

    Generalized Stacking Fault Energy Surfaces and Dislocation Properties of Silicon: A First-Principles Theoretical Study

    Full text link
    The generalized stacking fault (GSF) energy surfaces have received considerable attention due to their close relation to the mechanical properties of solids. We present a detailed study of the GSF energy surfaces of silicon within the framework of density functional theory. We have calculated the GSF energy surfaces for the shuffle and glide set of the (111) plane, and that of the (100) plane of silicon, paying particular attention to the effects of the relaxation of atomic coordinates. Based on the calculated GSF energy surfaces and the Peierls-Nabarro model, we obtain estimates for the dislocation profiles, core energies, Peierls energies, and the corresponding stresses for various planar dislocations of silicon.Comment: 9 figures (not included; send requests to [email protected]

    Binary formation and mass function variations in fragmenting discs with short cooling times

    Full text link
    Accretion discs at sub-pc distances around supermassive black holes are likely to cool rapidly enough that self-gravity results in fragmentation. Here, we use high-resolution hydrodynamic simulations of a simplified disc model to study how the outcome of fragmentation depends upon numerical resolution and cooling time, and to investigate the incidence of binary formation within fragmenting discs. We investigate a range of cooling times, from the relatively long cooling time-scales that are marginally unstable to fragmentation down to highly unstable cooling on a time-scale that is shorter than the local dynamical time. The characteristic mass of fragments decreases with reduced cooling time, though the effect is modest and dependent upon details of how rapidly bound clumps radiate. We observe a high incidence of capture binaries, though we are unable to determine their final orbits or probability of survival. The results suggest that faster cooling in the parent disc results in an increased binary fraction, and that a high primordial binary fraction may result from disc fragmentation. We discuss our results in terms of the young massive stars close to the Galactic Centre, and suggest that observations of some stellar binaries close to the Galactic Centre remain consistent with formation in a fragmenting accretion disc.Comment: 10 pages, 5 figures. Accepted for publication in MNRAS. Figures 1 and 3 degraded to meet arXiv size limits - version with high resolution figures available at http://www.strw.leidenuniv.nl/~rda/publications.htm

    Maladaptation and the paradox of robustness in evolution

    Get PDF
    Background. Organisms use a variety of mechanisms to protect themselves against perturbations. For example, repair mechanisms fix damage, feedback loops keep homeostatic systems at their setpoints, and biochemical filters distinguish signal from noise. Such buffering mechanisms are often discussed in terms of robustness, which may be measured by reduced sensitivity of performance to perturbations. Methodology/Principal Findings. I use a mathematical model to analyze the evolutionary dynamics of robustness in order to understand aspects of organismal design by natural selection. I focus on two characters: one character performs an adaptive task; the other character buffers the performance of the first character against perturbations. Increased perturbations favor enhanced buffering and robustness, which in turn decreases sensitivity and reduces the intensity of natural selection on the adaptive character. Reduced selective pressure on the adaptive character often leads to a less costly, lower performance trait. Conclusions/Significance. The paradox of robustness arises from evolutionary dynamics: enhanced robustness causes an evolutionary reduction in the adaptive performance of the target character, leading to a degree of maladaptation compared to what could be achieved by natural selection in the absence of robustness mechanisms. Over evolutionary time, buffering traits may become layered on top of each other, while the underlying adaptive traits become replaced by cheaper, lower performance components. The paradox of robustness has widespread implications for understanding organismal design

    Gap Formation in the Dust Layer of 3D Protoplanetary Disks

    Full text link
    We numerically model the evolution of dust in a protoplanetary disk using a two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a disk comprising 1% dust by mass in the presence of an embedded planet for two different disk configurations: a small, minimum mass solar nebular (MMSN) disk and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the grain size and planetary mass to see how they effect the resulting disk structure. We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a different appearance depending on the grain size and that such differences will be detectable in the millimetre domain with ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may facilitate the growth of planetesimals in this high density region.Comment: 5 page, 4 figures. Accepted for publication in Astrophysics & Space Scienc

    Self-gravitating fragmentation of eccentric accretion disks

    Full text link
    We consider the effects of eccentricity on the fragmentation of gravitationally unstable accretion disks, using numerical hydrodynamics. We find that eccentricity does not affect the overall stability of the disk against fragmentation, but significantly alters the manner in which such fragments accrete gas. Variable tidal forces around an eccentric orbit slow the accretion process, and suppress the formation of weakly-bound clumps. The "stellar" mass function resulting from the fragmentation of an eccentric disk is found to have a significantly higher characteristic mass than that from a corresponding circular disk. We discuss our results in terms of the disk(s) of massive stars at ~0.1pc from the Galactic Center, and find that the fragmentation of an eccentric accretion disk, due to gravitational instability, is a viable mechanism for the formation of these systems.Comment: 9 pages, 7 figures. Accepted for publication in Ap

    Stellar dynamical evidence against a cold disc origin for stars in the Galactic Centre

    Full text link
    Observations of massive stars within the central parsec of the Galaxy show that, while most stars orbit within a well-defined disc, a significant fraction have large eccentricities and / or inclinations with respect to the disc plane. Here, we investigate whether this dynamically hot component could have arisen via scattering from an initially cold disc -- the expected initial condition if the stars formed from the fragmentation of an accretion disc. Using N-body methods, we evolve a variety of flat, cold, stellar systems, and study the effects of initial disc eccentricity, primordial binaries, very massive stars and intermediate mass black holes. We find, consistent with previous results, that a circular disc does not become eccentric enough unless there is a significant population of undetected 100--1000 Msun objects. However, since fragmentation of an eccentric disc can readily yield eccentric stellar orbits, the strongest constraints come from inclinations. We show that_none_ of our initial conditions yield the observed large inclinations, regardless of the initial disc eccentricity or the presence of massive objects. These results imply that the orbits of the young massive stars in the Galactic Centre are largely primordial, and that the stars are unlikely to have formed as a dynamically cold disc.Comment: 5 pages, 6 colour figures. MNRAS Letters in press. (v2: very minor changes

    Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets

    Full text link
    The spectral energy distributions (SEDs) of some T Tauri stars display a deficit of near-IR flux that could be a consequence of an embedded Jupiter-mass planet partially clearing an inner hole in the circumstellar disc. Here, we use two-dimensional numerical simulations of the planet-disc interaction, in concert with simple models for the dust dynamics, to quantify how a planet influences the dust at different radii within the disc. We show that pressure gradients at the outer edge of the gap cleared by the planet act as a filter - letting particles smaller than a critical size through to the inner disc while holding back larger particles in the outer disc. The critical particle size depends upon the disc properties, but is typically of the order of 10 microns. This filtration process will lead to discontinuous grain populations across the planet's orbital radius, with small grains in the inner disc and an outer population of larger grains. We show that this type of dust population is qualitatively consistent with SED modelling of systems that have optically thin inner holes in their circumstellar discs. This process can also produce a very large gas-to-dust ratio in the inner disc, potentially explaining those systems with optically thin inner cavities that still have relatively high accretion rates.Comment: 9 pages, 7 figures, Accepted fir publication in MNRA

    Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity

    Full text link
    We study two closely related, nonlinear models of a viscoplastic solid. These models capture essential features of plasticity over a wide range of strain rates and applied stresses. They exhibit inelastic strain relaxation and steady flow above a well defined yield stress. In this paper, we describe a first step in exploring the implications of these models for theories of fracture and related phenomena. We consider a one dimensional problem of decohesion from a substrate of a membrane that obeys the viscoplastic constitutive equations that we have constructed. We find that, quite generally, when the yield stress becomes smaller than some threshold value, the energy required for steady decohesion becomes a non-monotonic function of the decohesion speed. As a consequence, steady state decohesion at certain speeds becomes unstable. We believe that these results are relevant to understanding the ductile to brittle transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure

    Excitonic condensate and quasiparticle transport in electron-hole bilayer systems

    Full text link
    Bilayer electron-hole systems undergo excitonic condensation when the distance d between the layers is smaller than the typical distance between particles within a layer. All excitons in this condensate have a fixed dipole moment which points perpendicular to the layers, and therefore this condensate of dipoles couples to external electromagnetic fields. We study the transport properties of this dipolar condensate system based on a phenomenological model which takes into account contributions from the condensate and quasiparticles. We discuss, in particular, the drag and counterflow transport, in-plane Josephson effect, and noise in the in-plane currents in the condensate state which provides a direct measure of the superfluid collective-mode velocity.Comment: 7 pages, 3 figure
    • …
    corecore