8 research outputs found

    Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects

    Get PDF
    AbstractMultifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12mm3 and median in-plane area of 4mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the characteristic spatial distribution and appearance of multifocal basal ganglia T2*w hypointensities in our elderly cohort on structural MRI appear to support the suggested association with mineralized proximal lenticulostriate arterioles and perivascular spaces

    Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    Get PDF
    AbstractMultifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index=0.62±0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing

    Communities and change in the anthropocene: understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures

    Get PDF
    The majority of vulnerability and adaptation scholarship, policies and programs focus exclusively on climate change or global environmental change. Yet, individuals, communities and sectors experience a broad array of multi-scalar and multi-temporal, social, political, economic and environmental changes to which they are vulnerable and must adapt. While extensive theoretical-and increasingly empirical-work suggests the need to explore multiple exposures, a clear conceptual framework which would facilitate analysis of vulnerability and adaptation to multiple interacting socioeconomic and biophysical changes is lacking. This review and synthesis paper aims to fill this gap through presenting a conceptual framework for integrating multiple exposures into vulnerability analysis and adaptation planning. To support applications of the framework and facilitate assessments and comparative analyses of community vulnerability, we develop a comprehensive typology of drivers and exposures experienced by coastal communities. Our results reveal essential elements of a pragmatic approach for local-scale vulnerability analysis and for planning appropriate adaptations within the context of multiple interacting exposures. We also identify methodologies for characterizing exposures and impacts, exploring interactions and identifying and prioritizing responses. This review focuses on coastal communities; however, we believe the framework, typology and approach will be useful for understanding vulnerability and planning adaptation to multiple exposures in various social-ecological contexts

    Too Eager to Comply? OECD Education Policies and the Finnish Response

    No full text

    Communities and change in the anthropocene: understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures

    No full text

    Rationale and Design for a GRADE Substudy of Continuous Glucose Monitoring

    No full text
    corecore