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Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular
mineralization, were recently proposed as a novelMRI biomarker for small vessel disease and ageing. These T2*w
hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high
intra-rater variability and low inter-rater agreement. To address these limitations,we developed a fully automated,
unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional,
co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal gan-
glia and adjacent internal capsule generated automatically from T1wMRI. The basal ganglia T2*w hypointensities
were then segmentedwith thresholds derivedwith an adaptive outlier detectionmethod from respective bivariate
T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the
initial masks based on their standardised T2*w intensity variance. The segmentation method was validated
using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast
agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in
their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia
T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by
an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may
have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and
ageing.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Focal hypointensities appear as a frequent feature on T2*-weighted
(T2*w) MRI in the basal ganglia of elderly, otherwise healthy, subjects
(Glatz et al., 2013). These features are believed to arise from
mineralisation in and around penetrating arteries and perivascular spaces
(Casanova and Araque, 2003; Morris et al., 1992; Slager and Wagner,
1956), which are possibly of ischemic origin (Janaway et al., 2014).
Harder et al. (2008), who studied focal basal ganglia hypointensities on
susceptibility-weighted imaging (SWI), found that their degree and
hypointensity increase with age, while Penke et al. (2012) demonstrated
that their volume correlated negatively with cognitive ability in both
youth and older age in a group of 143 community-dwelling subjects in
n Sciences, The University of
urgh EH4 2XU, UK.

. This is an open access article under
their seventies. Other studies, such as Aquino et al. (2009) and Li et al.
(2014), that have investigated the appearance of the basal ganglia in
non-demented elderly subjects on gradient-echo MRI have found that
this structure becomes more hypointense with age due to iron storage
(Hallgren and Sourander, 1958). However, van Es et al. (2008) reported
that increased basal ganglia iron might also be associated with other
age-related changes in the brain, such as white matter T2-weighted
(T2w) hyperintensities.

MRI has become the de facto standard for assessing iron andmineral
deposits in vivo (Haacke et al., 2005; Schenck and Zimmerman, 2004;
Valdés Hernández et al., 2012). These trace metal deposits accelerate
the realignment of water proton spins in the direction of the main
magnetic field and their dephasing in the transverse plane. This causes
a localized shortening of T1, T2, and T2* relaxation times and can lead
to focal hyperintensities on T1-weighted (T1w) volumes, and focal
hypointensities on T2w and T2*w volumes. However, trace metal de-
posits, such as ferritin, that are separated from water protons by a
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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water-soluble shell predominantly affect the contrast of T2w and T2*w
MRI, whereas they appear isointense on T1w MRI (inner and outer
sphere theory; Brass et al., 2006; Schenck, 2003). The T2w and T2*w
contrast of trace metal deposits depends on their magnetic susceptibil-
ity and their particle radius relative to the average water proton diffu-
sion path length (Weisskoff et al., 1994).

Focal basal ganglia T2*w hypointensities appear predominantly
iso- to slightly hypointense on T1w MRI and isointense on T2w MRI
which indicates that the underlying mineral deposits are more
water-insoluble than ferritin (Vymazal et al., 2000), and consist of
aggregated trace metals since this increases reversible dephasing of
diffusing water protons (Sedlacik et al., 2014; Weisskoff et al.,
1994). Subregions of basal ganglia T2*w hypointensities can also
appear very hypointense on T1w MRI which has been linked to ad-
vanced mineralization of the underlying tissue, such as calcification
(Henkelman et al., 1991; Slager and Wagner, 1956; Valdés
Hernandéz et al., 2014).

Methods for analysing basal ganglia T2*w hypointensities either
determine the hypointensity of the whole basal ganglia (Jasinschi
et al., 2006; Parsey and Krishnan, 1997; van Es et al., 2008) or the vol-
ume of focal T2*w hypointensities in individual structures (Valdés
Hernández et al., 2011). The former method first classifies all voxels
as hypointense that fall below a T2*w threshold which is either de-
rived from the T2*w signal intensities of the red nucleus or globus
pallidus. The ratio of hypointense to basal ganglia structure voxels
quantifies the degree of hypointensity of each structure. The latest
improvements in this method produce reliable results that are
in good agreement with those generated by experienced raters
(Jasinschi et al., 2006). On the other hand, focal T2*w hypointensities
in the basal ganglia are still typically segmented semi-automatically
(Valdés Hernández et al., 2011). An experienced rater first refines a
T2*w threshold equal to the median T2*w signal intensity of the
globus pallidus to exclude most artefacts. The rater then manually
removes the remaining artefacts based on the visual appearance of
focal T2*w hypointensities on T2*w and T1w MRI. An alternative
method has also been developed that produces colour maps of the
brain with minimum variance quantization of co-registered T2*w
and fluid attenuated inversion recovery (FLAIR) volumes (Valdés
Hernández et al., 2010). Haemosiderin deposits, which appear green
on these maps, are manually identified and included in the final masks.
However, validation of these methods shows that both are very time-
consuming and associated with high intra-rater variability and low
inter-rater agreement (Valdés Hernández et al., 2011).

In this study we therefore developed a fully automated method for
segmenting basal ganglia T2*w hypointensities to address the limita-
tions of the previously developed semi-automaticmethods.We then in-
vestigated the effect of method parameters on the segmentation results
in a custom-designed phantom employing several mineral deposit
models. The method was also validated with MRI data from a group of
community-dwelling subjects in their seventies with a wide range of
basal ganglia T2*w hypointensities which have been manually and
semi-automatically segmented by two experienced raters. The masks
from the manual segmentation were then used to optimise the param-
eters of the fully automated method, and to assess and compare the
accuracy and precision of the masks from the fully automated and
semi-automated segmentation.

Methods

Fig. 1 shows an overview of the fully automated method for
segmenting basal ganglia T2*w hypointensities. This method generates
basal ganglia T2*w hypointensity masks, which possibly indicate basal
ganglia mineral deposits (Penke et al., 2012), as well as T2*w/T1w
hypointensity masks, which possibly indicate regions of advanced
mineralisation, such as calcification (Valdés Hernandéz et al., 2014).
The method generates masks in three steps. Firstly, the structural
T2*w and T1w input volumes are preprocessed, which produces co-
registered T2*w and T1w volumes, as well as regions-of-interest (ROI)
masks. Secondly, T2*w and T1w thresholds are derived for segmenting
focal T2*w hypointensities. Lastly, initial output masks are created by
applying these thresholds to the co-registered T2*w and T1w volumes,
which are subsequently filtered to reduce thresholding artefacts.

The preprocessing pipeline was mainly implemented in GNU Bash
(www.gnu.org) with tools from FSL 5.0 (www.fmrib.ox.ac.uk/fsl) and
N4 (www.itk.org), whereas the main processing pipeline was imple-
mented in Matlab 2011b (Natick, MA, USA) with the LIBRA (Verboven
and Hubert, 2005) and NIFTI tools (Matlab Central, File ID: #8797). The
developed software is available at github.com/aglatz.

Preprocessing pipeline for structural T2*w and T1w MRI

A previously published preprocessing pipeline (Glatz et al., 2013)
was used to obtain co-registered T1wand T2*w volumes, aswell as cau-
date, putamen, globus pallidus and adjacent internal capsule masks,
which were combined in a ROI mask set. In short, non-brain structures
visible on T2*w volumes were automatically removed with FSL BET
(Smith, 2002). Non-brain structures visible on T1w volumes were
removed by transforming the brain masks created by FSL BET from
T2*w to T1w space and by applying them to the corresponding T1w
volumes. N4 was used for bias-field correction of all volumes and the
T1wvolumeswere affine registered to the corresponding T2*wvolumes
using FSL FLIRT (Jenkinson et al., 2002).

To generate the ROI mask set, the basal ganglia nuclei and the
thalamus were automatically segmented on the original T1w vol-
umes using FSL FIRST (Patenaude et al., 2011). All structural masks
were then linearly transformed from T1w to T2*w space with FSL
FLIRT and the previously obtained transformation matrices. Addi-
tional internal capsule masks were created by dilating the globus
pallidus masks towards the centre of the brain with half disk shaped
structural elements of 6 mm radius and then removing regions of
these masks that intersected with the union of caudate, putamen,
thalamus and globus pallidus masks. The final ROI mask set consisted
of four ROI masks,Ml

ROI ⊂M, with the structure labels l ∈ {cn, pu, gp,
ic} corresponding to the caudate nucleus (cn), putamen (pu), globus
pallidus (gp) and adjacent internal capsule (ic), whereM⊂ Z3 index-
es the MRI volume voxel lattice.

Automated threshold selection for segmenting focal T2*w hypointensities

The T2*w intensities of tissue l with focal T2*w hypointensities can
be modelled as

Gl ¼ 1−ξð ÞGnorm
l þ ξGhypo

l ; ð1Þ

where the cumulative distribution function of the T2*w intensities
Gl are a mixture of normal appearing T2*w tissue intensities and
T2*w hypointensities with the cumulative distribution functions Gl

norm

and Gl
hypo, and 0 ≤ ξ≤ 1 as the mixture weight. If both mixture compo-

nents are normally distributed then methods, such as mixture discrim-
inant analysis (Fraley and Raftery, 2002), can derive an optimal T2*w
threshold for dividing the T2*w tissue intensities into normal appearing
T2*w tissue intensities and T2*w hypointensities. However, as previ-
ously noted (Glatz et al., 2013), T2*w hypointensity distributions typi-
cally do not resemble normal distributions, their shapes are variable
and their mixture weights are very small (ξ b b 1), hence
identifyingtheir underlying parametric distributions is challenging.
Therefore T2*w hypointensities were considered outliers of the normal
appearing T2*w tissue intensity distribution, which is approximately
normally distributed in cases where the signal-to-noise ratio (SNR) is
larger than 2 (Gudbjartsson and Patz, 1995).

In this study a previously published robust multivariate outlier de-
tection method (Filzmoser et al., 2005) was adapted for co-registered

http://www.gnu.org
http://www.fmrib.ox.ac.uk/fsl
http://www.itk.org
http://www.github.com/aglatz


Fig. 1.Overviewof the fully automatedmethod for segmenting basal ganglia T2*whypointensities. Themethod requires structural T2*wand T1wvolumes as input. Thepreprocessing step
removes non-brain structures, reduces non-anatomical T2*w and T1w intensity variations (bias field) and automatically generates ROIs for the basal ganglia and adjacent internal capsule.
Then T2*w and T1w thresholds are automatically derived with an unsupervised outlier detection method from the T2*w and T1w intensity distribution of each ROI. Initial T2*w
hypointensity masks are obtained by applying the T2*w threshold to the T2*w volume. The connected components of these masks are identified and filtered according to their T2*w
intensity variance, which yields the final T2*w hypointensity masks. Additionally, subregions of basal ganglia T2*w hypointensities that appear hypointense on T1wMRI are segmented
since these possibly indicate advanced mineralization, such as calcification.
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T2*wand T1wMRI data as described in detail in Appendix A. Thismethod
derives the T2*w and T1w thresholds

sthreshl;T2�w ¼ sμl;T2�w−sσl;T2�wd
⌣crit;m

l

sthreshl;T1w ¼ sμl;T1w−sσl;T1wd
⌣crit;m

l

ð2Þ

for segmenting focal T2*w hypointensities and their subregions that
appear hypointense on T1w MRI. The robust means sl,T2 ⁎ w

μ , sl,T1wμ and
standard deviations sl,T2 ⁎ w

σ , sl,T1wσ of the normal appearing T2*w and
T1w tissue intensity distributions were estimated with the minimum co-
variance determinant (MCD) method (Rousseeuw, 1999). The z-score
of the critical distance d⌣ crit;m

l was constant or variable in case of the
non-adaptive or adaptive version of the outlier detection method
m∈ {na, ad}. A refinement of the constant z-score accounted for the finite
sample size of the normal appearing T2*w and T1w tissue intensity
distributions.
The contrast-to-noise ratio (CNR) corresponding to the thresholds in
Eq. (2) is

CNRthresh;m
l;t ¼

sthresh;ml;t −sμl;t

��� ���
snoisel;t

¼ sσl;t
�� ��
snoisel;t

d
⌣crit;m

l ¼ CNRσ
l;td
⌣crit;m

l ð3Þ

with t ∈ {T2 * w, T1w}. It depends on the CNR corresponding to the
spread of the normal appearing T2*w and T1w tissue distributions as
well as the z-score of the critical distance, hence it depends on the
MRI sequence parameters influencing the image noise, the estimation
method of the spread of the normal appearing T2*w and T1w tissue
distributions, as well as the sample size of this distribution in the case
of the adaptive outlier detectionmethod. However, the CNR correspond-
ing to the thresholds is independent of themean T2*wandT1w tissue in-
tensities, which both are known to decrease with age due to age-related
tissue changes, such as iron accumulation (Aquino et al., 2009).



Fig. 2. Phantommodels of basal ganglia T2*w hypointensities and their appearance on T2*w
MRI. Doped calcium alginate (CaAlg) gel beadswere used asmodels for focalmineralizations
in the basal ganglia (A). These gel beads were on average spherical with a diameter of 3mm
and either dopedwith theMRI contrast agent Nanomag-D 250 nm (N/250 nm), Nanomag-D
1200 nm (N/1200 nm), or Nanomag-D 1200 nm and hydroxyapatite nanocrystals (N/
1200 nm+ HA). These beads then appeared as focal hypo- and hyperintensities on T2*w
and T1w MRI. The plot below (B) shows the median T2*w contrast-to-noise ratios (CNRs)
of all three gel bead replicates (Eq. (5)) over the contrast agent concentrations, where the
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Segmentation and filtering of focal T2*w hypointensities

The T2*w and T1w thresholds (Eq. (2))were derived individually for
each ROI. Similar to van Es et al. (2008) and Valdés Hernández et al.
(2011), the T2*w hypointensities of all ROIs were then segmented
with the respective T2*w threshold of the globus pallidus since it repre-
sents the lowest and hence most conservative T2*w threshold, which
then created initial T2*whypointensitymasks. The thresholding artefacts
of thesemaskswere then eliminatedwith a connected components filter,
which yielded the final T2*w hypointensity masks. This filter is based on
the observation that a rater corrects the initial T2*w hypointensitymasks
by selectively removing individual focal T2*w hypointensities, i.e. con-
nected components of the initial T2*w hypointensity masks. One of the
criteria the rater used to judge whether a focal T2*w hypointensity of
the initial mask needed to be removedwas the smoothness of its appear-
ance on T2*w MRI. Preliminary investigations have shown that the rater
preferably removed focal T2*w hypointensities from the initial masks
if they appeared too smooth, i.e. if the T2*w hypointensities were too
similar. Therefore the connected components filter first identified the
connected components of the initial masks and then removed connected
components whose standardised T2*w intensity variance

ql;h ¼
shypo;σh;T2�w

snorm;σ loc

l;T2�w

0
@

1
A2

ð4Þ

was below a threshold q. Here shypo;σh;T2�w is the standard deviation of the
T2*w hypointensities of the connected component h and snorm;σ loc

l;T2�w is the
local standard deviation of the normal appearing T2*w tissue intensities
of the structure where the connected component is located. A threshold
q N 0 also implicitly removes connected components that have a size of
a single voxel since the standardised T2*w intensity variance of such
connected components is 0.

The final T2*w hypointensity masks and T2*w/T1w hypointensity
masks generated in the segmentation and filtering step are furthermore
denoted Ml,T2 ⁎ w

hypo and Ml,T1w
hypo . The latter select the subregions of

T2*w hypointensities that appear hypointense on T1w MRI, hence
Ml,T1w

hypo ⊂ Ml,T2 ⁎ w
hypo . These masks were created with the T1w thresholds

(Eq. (2)) corresponding to the structures, where the individual T2*w
hypointensities were located. The segmentation and filtering step is
described in further detail in Appendix B.
error bars indicate the respective interquartile ranges. The CNR increase with the contrast
agent concentration was modelled with robust linear regression lines (dashed).
Validation

The presented automated method for segmenting focal T2*w
hypointensities was validated with co-registered T1w and T2*w vol-
umes acquired from (i) a custom-designed MRI phantom containing
doped gel beads as models for basal ganglia mineralizations and (ii)
98 community-dwelling subjects in their seventies recruited from
the Lothian Birth Cohort 1936 (LBC1936; Deary et al., 2007). In
both cases the multifocal T2*w hypointensities were automatically
segmented with the presented method. The automatically generated
masks were compared with referencemasks, which in the case of the
subjects, were produced by an experienced rater. The purpose of the
phantom was to analyse the appearance of the basal ganglia miner-
alization models on T2*w MRI, as well as to investigate the effect of
the adaptive outlier detection method and the connected compo-
nents filter on the segmentation results. The validation of the soft-
ware with subject data was carried out to identify the optimal
connected components filter parameters for obtaining basal ganglia
T2*w hypointensity masks that best resemble those from the rater,
as well as to determine the accuracy and precision of the developed
segmentation method.
Validation with a custom-built phantom

Phantom design
Three types of calcium alginate (CaAlg) gel beads (Fig. 2A) containing

the MRI contrast agents Nanomag-D 250 nm (N/250 nm), Nanomag-D
1200 nm (N/1200 nm) and Nanomag-D 1200 nmmixed with hydroxy-
apatite (HA) nanocrystals (N/1200 nm+HA) were produced as models
for mineral deposits in the basal ganglia. Seven gel beads of the same
type containing varying amounts of Nanomag-D 250 nm or Nanomag-
D 1200 nm (Table 1) were suspended in 1.8% w/v agarose in a
subcompartment of the phantom. The final phantom consisted of 9
such subcompartments, which were sealed 10 ml BD syringes (www.
medisave.co.uk), so that each gel bead type with the same contrast
agent concentration was replicated three times. To provide head coil
loading and to reduce susceptibility artefacts, these subcompartments
were placed in 1.25 g/l CuSO4, 3.6 g/l NaCl solution and oriented parallel
to the main magnetic field of the scanner.

Nanomag-D 250 nm (micromod Partikeltechnologie, Rostock,
Germany) is a MRI contrast agent, which consists of 5–15 nm iron par-
ticles inside a dextran matrix with a diameter of 250 nm. Nanomag-D

http://www.medisave.co.uk
http://www.medisave.co.uk
image of Fig.�2


Table 1
Composition of the sodium alginate solutions for creating the calcium alginate gel beads used as mineral deposit models. A 2% (w/v) sodium alginate
solution was used as the base solution for creating all gel beads (Xie et al., 2010). The MRI contrast agents Nanomag 250 and 1200 nm, as well as the
hydroxyapatite precursor, were added in the following concentrations to the base solution to create gel beads containing iron and hydroxyapatite
nanocrystals, which were then used as mineral deposit models.

Gel bead type Sodium alginate solution additives

MRI contrast agent Hydroxyapatite precursor

N/250 nm 0, 1, 2, ..., 7 mg/l Nanomag 250 nm None
N/1200 nm 0, 1, 2, ..., 7 mg/l Nanomag 1200 nm None
N/1200 nm + HA 0, 1, 2, ..., 7 mg/l Nanomag 1200 nm 200 mmol/l Na2HPO4

336 A. Glatz et al. / NeuroImage 105 (2015) 332–346
1200 nm particles are produced by carefully aggregating Nanomag-D
250 nm with additional dextran as glue and have previously been
used as a model of basal ganglia iron deposits (Sedlacik et al., 2014).
The protocol for producing the CaAlg gel beads was based on that de-
scribed by (Xie et al., 2010). In short, 2% (w/v) sodium alginate solutions
weremixed either with N/250 nm, N/1200 nm, or N/1200 nm and a hy-
droxyapatite precursor, as summarized in Table 1, and were dripped
with 10 ml BD syringes into 500 mM calcium chloride solutions.
The droplets were transitioned in these solutions into approximately
spherical gel beads with a mean diameter of 3 mm containing iron
and hydroxyapatite nanocrystals as shown in Fig. 2A.
MRI protocol
The phantom was scanned on a GE Signa HDxt 1.5 T clinical scanner

(General Electric, Milwaukee, WI, USA) using a self-shielding gradient
set with maximum gradient of 33 mT/m and an eight-channel phased-
array receive/transmit head coil. Table 2 shows the MRI protocol for
the phantom, which consisted of T2*w (GRASS) and T1w (IR-prep
SPGR) sequences. This protocol was the same as that used to image the
subjects except that the field-of-view was smaller and the slices were
thicker to reduce Gibbs ringing artefacts caused by the subcompartment
walls of the phantom. T2*w and T1w sequences were prescribed
to image exactly the same volume containing all the gel beads, which
produced naturally co-registered T2*w and T1w volumes. The typical
appearance of the gel beads on T2*w and T1w MRI is shown in Fig. 2A.
Unlike basal ganglia T2*w hypointensities (Glatz et al., 2013), all CaAlg
gel beads were clearly visible on T1w MRI as focal hyperintensities,
which had no impact on their automated segmentation and was
exploited for creating the reference masks as described further below.
Table 2
MRI sequence parameters for scanning the phantom and LBC1936 subjects. The complete
protocol for LBC1936 subjects is described in Wardlaw et al. (2011).

Sequence IR-prep FGRE (3D) GRASS (2D)

Contrast type T1-weighted (T1w) T2*-weighted (T2*w)
Flip angle in degrees 8 20
TI/TR in ms 500/9.8 –/940
Bandwidth in Hz/pixel 122 98
TE in ms 4 15

MRI phantoma

FOV in mm2 192 × 192 192 × 192
Orientation Axial Axial
Slice thickness in mm 1.2 2.4
Acquisition matrix (effective
and final)

256 × 256 256 × 256

Subjects
FOV in mm2 256 × 256 256 × 256
Orientation Coronal Axial
Slice thickness in mm 1.3 2
Effective acquisition matrix 192 × 192 256 × 192
Final acquisition matrixb 256 × 256 256 × 256

a The T1w and T2*w sequences were configured to image the same phantom volume.
b After interpolation by the scanner software.
Image preprocessing and semi-automatic ROI segmentation
N4was used for the biasfield correction of the T2*w andT1wvolumes

(Tustison et al., 2010). The T1w volume was then resampled using FSL
FLIRTwith sinc interpolation (Jenkinson et al., 2002) tomatch the resolu-
tion of the T2*w volume. ROI masks were semi-automatically created
with the T1w volume as described below and then resampled using FSL
FLIRT with nearest neighbour interpolation (Jenkinson et al., 2002).

Initial ROI masks were produced by thresholding the bias-field
corrected T1w volume with a threshold equal to 80% of the mean T1w
signal intensity of the CuSO4/NaCl solution. The obtained mask was
first dilated using a spherical kernel with 6 mm diameter to close
holes caused by the T1w hyperintensities of the gel beads and then
eroded using a spherical kernel with 12 mm diameter to remove
artefacts from the plastic walls of the subcompartments. The final ROI
masks were obtained after manually removing remaining artefacts and
assigning unique labels to the individualmasks of each subcompartment.

Segmentation and quality control of the CaAlg gel beads on T2*w MRI
The CaAlg gel bead reference mask was obtained by automatically

placing spherical shaped masks with the average diameter of the gel
beads at the locations of the T1w hypointensities created by the gel
beads. For the quality control of the CaAlg gel beads this mask was sub-
sequently used to calculate the CNRs on T2*w MRI of all gel beads,
which should increase approximately linearly per gel bead type with
contrast agent concentration due to the short echo time and the low
contrast agent concentrations.

The initial locations of these T1w hypointensities were estimated
from masks which were created by logically inverting the initial ROI
masks and combining them with the final ROI masks with a logical
AND operation. The connected components of the resulting masks
then corresponded to most of the T1w hypointensities caused by the
CaAlg gel beads. Missing connected components or connected compo-
nents associated with artefacts were added or removed manually. Sub-
sequently, the connected components were replaced by the spherical
masks with a diameter of 3 mm, which were typically smaller than
the hyperintensities visible on the original T1w volumes due to partial
volume effects (Rexilius and Peitgen, 2008). Finally, the spherical
masks Mv,w,l,T2 ⁎ w

hypo,ref , where v ∈ {1, 2, …, 7} is the gel bead index,
w ∈ {1, 2, 3} is the replicate index, and l ∈ {1, 2, 3} is the ROI index,
were centred on the corresponding T1w hypointensities. The optimal
position of a spherical mask was estimated by translating the masks
along all coordinate system axes to find the position where the mean
T1w intensities of all voxels selected by this mask became a maximum.

The mean CNR of all CaAlg gel bead replicates on T2*w MRI then
calculated with

CNRv;l;T2�w ¼ 1
3

X3
w¼1

shypo;μv;w;l;T2�w−snorm;μ
w;l;E2�w

��� ���
 !

=snoiseT2�w; ð5Þ

where sv,w,l,T2 ⁎ w
hypo,μ is the robust mean T2*w intensity of an individual

CaAlg gel bead selected by the masksMv,w,l,T2 ⁎ w
hypo,ref , sw,l,T2 ⁎ w

norm,μ is the robust
mean intensity of the agarose in the respective subcompartment,
and sT2 ⁎ w

noise is the T2*w image noise (Firbank et al., 1999). The increase
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of the mean CNR per gel bead type with the contrast agent concentra-
tion was estimated with robust linear regression lines (Matlab function
‘robustfit()’).

Automated segmentation of focal T2*w hypointensities in the phantom
Focal T2*w hypointensities were segmented in each subcompartment

of the phantom using the original and bias-field corrected T2*w and T1w
volumes with the respective T2*w thresholds from the non-adaptive and
adaptive version of the outlier detection method (Automated threshold
selection for segmenting focal T2⁎w hypointensities section). To investi-
gate the effect of the connected components filter on the segmentation
results, the initial masks were also filtered with the connected compo-
nents filter parameters q=0, 0.1,…, 1.5. To aid further analysis, the con-
nected components (six-connected neighbourhood) of the generated
masks Mw,l,T2 ⁎ w

hypo (b, m, q), where b ∈ {orig, bfc} created with the original
or bias-field corrected T2*w and T1w volumes were also identified and
labelled with the Matlab function ‘bwlabeln()’.

Comparison of the non-adaptive and adaptive outlier detection methods
For the comparison of the non-adaptive and adaptive version of the

outlier detection method the agreement between the CaAlg gel bead
reference mask and the corresponding T2*w hypointensity masks,
which were generated on the original and bias-field corrected volumes,
were assessed. The number of segmented T2*w hypointensities that
corresponded to gel beads, as well as those that represented
thresholding artefacts were counted. A connected component of the
generated masks was considered to be associated with a gel bead if its
mask overlapped at least 50% with the corresponding reference mask,
i.e. the regional sensitivity was greater than 0.5 (Shattuck et al., 2009).
The spatial agreement between the CaAlg gel bead reference and gener-
atedmaskswas quantifiedwith the Jaccard index (Shattuck et al., 2009)

Jl b;m; qð Þ ¼
Mhypo

l;T2�w b;m; qð Þ∩Mhypo;re f
l;T2�w

��� ���
Mhypo

l;T2�w b;m; qð Þ∪Mhypo;re f
l;T2�w

��� ��� ; ð6Þ

which is 0 in situations where these masks are completely disjointed or
1 if they are identical. Lastly, the minimum CNRs of the segmented
CaAlg gel beads and the CNR of the respective T2*w thresholds
(Eq. (3)) were calculated to investigate their agreement.

Analysis of the blooming artefacts around the CaAlg gel beads
To analyse how the blooming artefacts depend on the gel bead type

and MRI contrast agent concentration, the apparent volume increase of
the doped CaAlg gel beads on T2*wMRIwas calculated and plotted over
the MRI contrast agent concentration.

Firstly, the mean volumes of the connected components masks
Mh,w,l,T2 ⁎ w

hypo (b = bfc, m, q = 0) associated with gel beads containing
the same amount and type of contrast agent were

Vh;l mð Þ ¼ 1
3

X3
w¼1

Mhypo
h;w;l;T2�w b ¼ bf c;m; q ¼ 0ð Þ

��� ���Vvox ð7Þ

with Vvox as the voxel volume. As the connected components were
on average spherical their diameter Dh,l(m) could be estimated
with the volume formula of a sphere. The apparent volume increase
of the gel beads on T2*w MRI was then quantified with the relative
gel bead diameter Dh,l

rel(m) = Dh,l(m)/Dbead with Dbead ≈ 3 mm,
which was then plotted over the contrast agent concentration.

Analysis of the connected components filter characteristics
The characteristic filter functions of the connected components

filter indicate the change in the spatial agreement between the
masks Ml,T2 ⁎ w

hypo (b = bfc, m = ad, q) and the CaAlg gel bead reference
mask with the filter parameter q. To construct the characteristic filter
functions of each ROI, the spatial agreement between each generated
mask and the reference mask was quantified with the standardised
Jaccard index

Jstdl qð Þ ¼ Jl qð Þ
Jl q ¼ 0ð Þ ; ð8Þ

with Jl(q) := Jl(b = bfc, m = ad, q) from Eq. (6). The relative Jaccard
index was evaluated at q = 0, 0.1, …, 1.5 and then plotted over the
parameter q. The FWHM of a characteristic filter function was the
parameter qlFWHM, where Jl

std(qlFWHM) = 0.5.

Validation with subject data

Subject cohort and validation sample
The LBC1936 and associated MRI protocol (partly included in

Table 2) are described in detail in Deary et al. (2007, 2012) and
Wardlaw et al. (2011). In short, the LBC1936 is a longitudinal study of
cognitive ageing that originally recruited a group of 1091 community-
dwelling individuals resident in the Edinburgh and Lothian areas of
Scotlandwhowere born in 1936. Seven hundred of themwere scanned
at a mean age of 72.5 years (SD= 0.7 years) with a published protocol
on a GE Signa HDxt 1.5 T clinical scanner (General Electric, Milwaukee,
WI, USA) using a self-shielding gradient set with maximum gradient of
33mT/m and an eight-channel phased-array receive/transmit head coil.
Their MRI scans were categorized according to the General and
Putaminal Visual Rating Scale (Valdés Hernández et al., 2011). For this
study a sample was generated containing 100 randomly selected
subjects from each category of the General and Putaminal Visual Rating
Scale. Two subjects were excluded due to missing MRI data and signifi-
cantmotion artefacts, which left 98 subjects (45 females) for the valida-
tion of the developed segmentation method.

Segmentation of basal ganglia T2*w hypointensities
For comparison the basal ganglia T2*w hypointensities of the

subjects were segmented fully automatically and semi-automatically
with the developed method, as well as manually with Analyze 10.0
(Mayo Clinic, Rochester, MN, USA) as described in Glatz et al. (2013).

The fully automated segmentation method was used to segmented
basal ganglia T2*w hypointensities on the original, as well as bias-field
corrected T2*w and T1w volumes with the adaptive outlier detection
method since the latter yielded the most promising results in vitro. For
the fully automated segmentation the optimal connected components
filter parameters q were estimated with a 10-fold cross-validation
method as described in Appendix C. This method optimised the con-
nected components' filter parameters to obtain basal ganglia T2*w
hypointensity masks that are most similar to those created manually.

In the semi-automated segmentation of the basal ganglia T2*w
hypointensities an experienced rater (MHV) used the developed meth-
odwith the adaptive version of the outlier detectionmethod to segment
basal ganglia T2*whypointensities in all subjects on bias-field corrected
T2*w and T1w volumes. For each subject the rater manually adjusted
the connected components filter parameters q, generated the T2*w
hypointensity masks, and subsequently edited the generated masks
with Analyze 10.0 to add missing T2*w hypointensities or remove
thresholding artefacts.

Numerical analysis of the volumetric and spatial mask agreement
The volumetric agreement between the fully- and semi-automatically

generated masks, and manually created reference masks was quantified
with the intra class correlation coefficient (ICC; agreement version),
which was calculated with the R function ‘icc()’ (CRAN.R-project.org/
package=psy). The spatial agreement between these masks was
determined with the Jaccard index (Eq. (6)), which was also converted
to the Dice coefficient as described in Shattuck et al. (2009). Further-
more, the Jaccard indices between the unfiltered basal ganglia T2*w
hypointensity masks and the reference masks was quantified and

http://www.CRAN.R-project.org/package=psy
http://www.CRAN.R-project.org/package=psy


Table 3
Comparison of the outlier detectionmethods. The focal T2*whypointensities of the phantom
were segmented on the original and bias-field corrected T2*w and T1w volumes with the
T2*w thresholds from thenon-adaptive and adaptive versionof theoutlier detectionmethod.
This table shows the minimum CNR of the segmented gel beads and the CNRs of the T2*w
thresholds (Eq. (3)), as well as the average Jaccard index, which quantifies the spatial agree-
ment between the generated and reference masks of each ROI. Furthermore it includes the
average number of segmented focal T2*w hypointensities per ROI that was associated with
gel beads (total number of gel beads per ROI = 7) and thresholding artefacts.

Outlier detection
method

Non-adaptive Adaptive

Bias-field correction None N4 None N4

Minimum CNR of CaAlg
gel beads

5.60 ± 0.80 4.58 ± 0.42 7.39 ± 1.45 5.19 ± 0.55

CNR of T2*w threshold 5.21 ± 0.40 4.51 ± 0.38 6.47 ± 0.87 5.02 ± 0.44
Jaccard index 0.16 ± 0.08 0.21 ± 0.07 0.12 ± 0.10 0.22 ± 0.09
Segmented gel beads 1.33 ± 0.87 2.56 ± 1.24 0.89 ± 0.93 2.22 ± 1.20
Thresholding artefacts 4.67 ± 2.96 20.44 ± 4.90 2.33 ± 1.41 6.67 ± 3.54
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related to the corresponding Jaccard indices obtained with the fil-
tered masks to investigate the impact of the connected components
filter on the spatial agreement between the generated and reference
masks. The adjusted 95% confidence interval of all robust means was
obtained from bootstrapping with the R function ‘boot()’ (CRAN.R-
project.org/package = boot).

Bland–Altman analysis of the volumetric and spatial mask agreement
Modified Bland–Altman plots (Bland and Altman, 1986) were used

to graphically assess the volumetric and spatial agreement between
the generated and reference basal ganglia T2*w hypointensity masks.
Quantile regression lines (Koenker and Hallock, 2001) were added to
these plots to indicate the change of the average agreement (accuracy)
and the variability of the agreement (precision) with the average mask
volume, as well as to identify outliers. They were constructed by
plotting the relative mask volume differences

ΔVrel
k ¼ Vhypo;opt

T2�w;k −Vhypo;re f
T2�w;k

� �
=Vk; ð9Þ

and the Jaccard indices Jk
opt = Jk

opt(qopt) (Eq. (6)) over the

logarithmised average mask volumes V ¼ Vhypo;opt
T2�w þ Vhypo;re f

T2�w
� �

=2,

where k∈ {1, 2,…, kmax} represents the subject index. The normalisation
of the mask volume difference with the average masks volume and the
logarithmic transformation of the average mask volume mapped the
mask volume differences and the average mask volumes of very large
and small basal ganglia T2*w hypointensities into a similar value range.
The trend of the data in themodified Bland–Altman plots was estimated
with quantile regression lines (Koenker and Hallock, 2001), which were
estimated for the 5th, 25th, 50th, 75th and 95th percentiles. Subjects,
where neither the method nor the rater segmented basal ganglia T2*w
hypointensities masks, were excluded from the plots since Eq. (9) is un-
defined in this case. The masks of subjects with corresponding relative
volume differences or Jaccard indices outside the quantile regression
lines of the 5th and 95th percentiles, i.e. the 90% range, were considered
as outliers and were visually inspected.

Results

Validation with a custom-built phantom

Quality control of the CaAlg gel beads on T2*w MRI
Fig. 2B shows that the CNRs of all doped gel beads (c N 0 mg/l) in-

crease approximately linearly with the contrast agent concentration
since the gel beads appear increasingly hypointense with respect to
the surrounding agarose on T2*wMRI. As the gel beads with a contrast
agent concentration c = 0 mg/l appear hyperintense with respect to
the surrounding agarose on T2*w MRI their CNRs are higher than
those of gel beads with c = 1 mg/l, which appear predominantly
isointense. The slopes of the robust regression lines associated with
the gel bead types N/250 nm, N/1200 nm and N/120 nm + HA were
1.75, 1.34 and 0.80 l/mg, whereas their intercepts were −0.73, 0.24
and −0.67. The differences in the slopes are caused by the differences
in the mass magnetic susceptibility of the contrast agents. In the case
of the N/1200 nm and N/250 nm gel beads the magnetic susceptibility
difference comes from the fact that the N/1200 nm particles were
obtained by aggregating N/250 nm particles with additional dextran
with the result that the amount of iron per N/1200 nm gel bead is
slightly lower than that for the N/250 nm gel bead. Conversely, the
N/1200 nm + HA gel beads have a lower magnetic susceptibility
than N/1200 nm gel beads since the magnetic susceptibility of
N/1200 nm and HA have opposite signs and therefore the HA crystals
partly cancel the effect on the main magnetic field caused by the
N/1200 nm particles.
Comparison of the non-adaptive and adaptive outlier detection methods
Table 3 shows that the lowest CNRs, and hence the highest T2*w

thresholds relative to the mean T2*w intensity of the agarose (Eq. (3)),
were obtained with the non-adaptive outlier detection method on
the bias-field corrected T2*w and T1w volumes. The focal T2*w
hypointensity masks created with these thresholds selected the highest
number of CaAlg gel beads, however, they were also affected by the
highest number of thresholding artefacts. Conversely, the lowest T2*w
thresholds relative to the mean T2*w intensity of the agarose were ob-
tained with the adaptive outlier detection method on the original T2*w
and T1w volumes, which segmented the lowest number of CaAlg gel
beads, as well as having the fewest thresholding artefacts. Overall, the
T2*w thresholds obtained with the adaptive version of the outlier detec-
tion method on bias-field corrected T2*w and T1w volumes segmented,
on average, 13% less CaAlg gel beads than the non-adaptive version,
however, it also reduced the number of segmentation artefacts by, on av-
erage, 67%. In the case of the phantom this method therefore produced
results that represented a trade-off in terms of the number of segmented
gel beads, hence the segmentation sensitivity, and thresholding artefacts,
which is also confirmed by the Jaccard indices shown in Table 3.

Analysis of the blooming artefacts around the CaAlg gel beads
Fig. 3 shows that the relative diameter of the focal T2*w

hypointensities Dh,l
rel(m, q = 0) depends on the CaAlg gel bead type, as

well as the contrast agent concentration, both factors that contribute
to the volume magnetic susceptibility of the gel beads as described in
Quality control of the CaAlg gel beads on T2⁎wMRI section. The appar-
ent gel bead diameter increase on T2*wMRI can therefore be attributed
to the volume of blooming artefacts around the gel beads, which are a
function of the volume magnetic susceptibility (Pintaske et al., 2006).
Fig. 3 also shows that the T2*w hypointensity masks of N/250 nm,
N/1200 nm and N/1200 nm + HA gel beads, which were generated
with T2*w thresholds from the adaptive outlier detection method, are
(median [interquartile range] %) 5.4 [37.1], 10.6 [70.2], and 5.0 [5.3] %
smaller than the respective masks created with T2*w thresholds from
thenon-adaptive outlier detectionmethod. This approximately uniform
decrease across all gel bead masks shows that the blooming artefacts
cannot be selectively reduced with a subject specific threshold as was
used here. The volumes of the basal ganglia T2*w hypointensity
masks from the developed segmentation method are therefore influ-
enced by the actual volume of the underlying mineralization, as well
as its magnetic susceptibility.

Analysis of the connected components filter characteristics
Fig. 4A shows the characteristic function of the developed connected

components filter for each gel bead type. The FWHM of the charac-
teristic filter functions associated with the N/250 nm, N/1200 nm and
N/1200 nm + HA gel beads were 1.39, 0.86, and 0.72. This indicates



Fig. 3. Apparent gel bead diameter increase on T2*w MRI due to blooming artefacts. The
T2*w hypointensities of the doped CaAlg gel beads were segmented with the thresholds
from the non-adaptive and adaptive outlier detection methods on bias-field corrected
T2*w and T1wvolumes. The T2*w hypointensities of the obtainedmasks that corresponds
to gel beads were identified, their diameter measured and normalised by the average gel
bead diameter Dbead ≈ 3 mm. This plot shows the measured diameter Dh,l

rel(m) over the
contrast agent concentration. Dashed and solid lines refer to the results associated with
the non-adaptive and adaptive outlier detection method.
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that this filter preferentially removed T2*w hypointensities associated
with N/1200 nm and N/1200 nm + HA gel beads from the T2*w
hypointensitymasks obtained after thresholding,which is also illustrated
in Fig. 4B. The connected components filter also reduces thresholding
artefacts, which can lead to maxima in the characteristic functions, as
it was the case for the characteristic functions of the N/1200 gel beads.
Overall these results confirm that the connected components filter
preferentially retains features that appear more inhomogeneous on
T2*w MRI, such as the N/250 nm gel beads, which appear as focal
T2*w hypointensities with dark core regions and bright shell regions.

Validation with subject data

Numerical analysis of the volumetric and spatial mask agreement
The steps by which the fully and semi-automated segmentation

methods create basal ganglia T2*w hypointensity masks are illustrated
Fig. 4. Characteristic functions of the connected components filter. The left Figure (A) shows the
coloured dots represent the FWHM of the filter functions. These characteristic functions i
hypointensities associated with N/1200 nm and N/1200 nm+ HA gel beads (black arrows) si
associated with N/250 nm gel beads. The right Figure (B) illustrates these filter properties for t
in Fig. 5. The results of the numerical analysis of the volumetric and spa-
tial agreement between the manually created basal ganglia T2*w
hypointensity masks and the fully and semi-automatically created
masks are summarized in Table 4. This table shows that the masks cre-
ated with the thresholds from the adaptive outlier detectionmethod on
the original T2*w and T1w volumes were most similar to those created
manually by the experienced rater as indicated by the corresponding
Jaccard indices and Dice coefficients. In the semi-automated segmenta-
tion of the basal ganglia T2*w hypointensities the rater edited a total of
20maskswhich, however, lead to aminimal change in the Jaccard index
compared with that produced by the fully automated segmentation
using the bias-field corrected volumes. The intraclass correlation coeffi-
cient associated with the semi-automated method, on the other hand,
was higher than that of the fully automated method. This indicates
that manual editing of the masks by the second rater had little effect
on the spatial agreement between the generated and reference masks,
albeit with a marked effect on their volumetric agreement. In all cases
the CNR associated with the automatically estimated thresholds
(Eq. (3)), aswell as the connected components'filter parameters, varied
very little across the subjects. Lastly, Table 4 also shows that connected
component filtering andmanual editing of the unfilteredmasks (q=0)
did not lead to a greater improvement in each subject's Jaccard index
compared with connected component filtering only.
Bland–Altman analysis of the volumetric and spatial mask agreement
The volumetric and spatial agreement between the basal ganglia

T2*w hypointensity masks, which were automatically created on the
bias-field corrected T2*w and T1w volumes, and the corresponding
reference masks was assessed with the Bland–Altman plots in Fig. 6.
The plot in Fig. 6A indicates that the average mask volume difference,
as indicated by the median regression line, is close to zero and slightly
decreases with the average mask volume. This indicates that the gener-
ated and referencemask volumeswere, on average, very similar. Howev-
er, the masks for smaller and larger basal ganglia T2*w hypointensities
were slightly too large and slightly too small. Conversely, Fig. 6B shows
that there was largely no spatial agreement between the generated
and reference masks for very small basal ganglia T2*w hypointensities.
However, the spatial agreement between generated and reference
masks increased markedly with the average mask volume to Jaccard in-
dices above 0.7, corresponding to an 80% overlap of these masks. Fur-
thermore, both figures show that the variability of the volumetric and
spatial agreement decreased with the average mask volume. Overall,
these results indicate that for subjects with large basal ganglia T2*w
characteristic functions of the connected components filter for each gel bead type and the
ndicate that with increasing parameter q the filter predominantly rejects focal T2*w
nce these focal T2*w hypointensities appear more homogenous on T2*w MRI than those
he case q = 1.
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Fig. 5. ROI, intensity distribution outliers and basal ganglia T2*w and T2*w/T1w hypointensity masks of a representative subject. The figures in the first row (A) show the basal ganglia of
this subject on T2*w and T1wMRI,which are used to generate ROImasks (B). These ROImasks selectmost of the basal ganglia structures, aswell as the adjacent internal capsule. However,
the caudate and internal capsulemasks appear slightly too large and also select the cerebrospinalfluid, parts of the external capsule or voxels from other adjacent structures. The T2*w and
T1w intensity distribution outliermasks (C) include the basal ganglia T2*whypointensities,whichwere then segmentedwith thederived T2*w thresholds. After reducing the thresholding
artefacts with the connected components filter the final basal ganglia T2*w hypointensity mask (D, yellow and cyanmasks) were obtained, which are in substantial agreement with the
masks from the rater (Jaccard index= 0.93). Subregions of basal ganglia T2*w hypointensities, which appear hypointense on T1wMRI and potentially indicate advancedmineralization,
are selected by the basal ganglia T2*w/T1w hypointensity masks (D, yellow masks).
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hypointensities there was substantial volumetric and spatial agreement
between the automatically generated and the reference masks from
the experienced rater.

Data points outside the 5th and 95th percentile regression lines in
Fig. 6A and data points below the 5th percentile regression line in
Fig. 6B represent subjects for which the method failed to produce
masks. Visual inspection of the generated and reference masks of
these subjects found that most of the T2*w hypointensities were very
small, appeared isointense on T1w MRI, and were associated with a
low CNR and fuzzy boundaries on T2*w MRI. In the case of one subject
the T2*w MRI was heavily compromised by susceptibility artefacts,
and in other two cases the T2*w and T1w intensity distributions of the
normal-appearingbasal ganglia tissuewere either bimodal or did not re-
semble normal distributions. The latter violated the main assumptions

image of Fig.�5


Table 4
Basal ganglia T2*whypointensity segmentation statistics. Basal ganglia T2*whypointensitieswere segmentedwith the fully- and semi-automatedmethods. In the former case the features
were segmented on the original and bias-field corrected T2*w and T1w volumes, whereas in the latter case they were segmented on the bias-field corrected T2*w and T1w volumes.
The T2*w and T1w thresholds were estimated with the adaptive outlier detection method and the connected components filter parameter q was either chosen with the 10-fold cross-
validation method or manually by the rater. In the semi-automatic segmentation method, the rater also edited the generated masks to add basal ganglia T2*w hypointensities that were
missed by the method and to remove thresholding artefacts. This table shows the robust mean, standard deviation (SD) and 95% confidence interval (CI) of the robust mean of the filter
parameter q, the CNR associated with the T2*w threshold (Eq. (3)), as well as measures that quantify the volumetric and spatial agreement between the generated and reference masks,
which were manually created by a second experienced rater.

Method Fully-automated Semi-automated

Bias-field correction None N4 N4

Statistics Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI

Parameter q 0.90 ± 0.00 N/A 0.80 ± 0.00 N/A 0.80 ± 0.00 N/A
CNR 8.8 ± 1.3 8.6, 9.1 7.8 ± 1.4 7.7, 8.1 7.8 ± 1.4b 7.7, 8.1b

Jaccard 0.67 ± 0.40 0.51, 0.75 0.62 ± 0.40 0.53, 0.74 0.62 ± 0.41 0.48,0.70
Δ Jaccarda 0.03 ± 0.34 0, 0.06 0.03 ± 0.23 0, 0.07 0.03 ± 0.30 0,0.05
Dice 0.80 ± 0.29 0.69, 0.83 0.77 ± 0.30 0.69, 0.86 0.77 ± 0.33 0.63,0.83
ICC 0.69 0.24, 0.91 0.70 0.23, 0.93 0.74 0.54,0.90

a Relative to the corresponding Jaccard indices obtained at q = 0.
b Same values as obtained with the automated method on bias-field corrected volumes.
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of the outlier detection methods and therefore there was a marked dif-
ference between the automatically estimated T2*w thresholds and
those produced by the rater.

Discussion

In this study we developed and validated a novel method for the
automatic segmentation of multifocal T2*w hypointensities in the
basal ganglia and adjacent internal capsule which are believed to arise
from mineral deposits in and around the penetrating arterioles and
perivascular spaces. This method uses an adaptive outlier detection
method to derive T2*w and T1w thresholds from bivariate T2*w and
T1w intensity distributions of individual basal ganglia structures. The
CNRs associated with these thresholds (Eq. (3)) are insensitive to a
change in the mean T2*w and T1w intensity of a structure, as it is
the case in ageing due to iron accumulation. These thresholds are
then used to segment all focal T2*w hypointensities of a structure and
a connected components filter subsequently removes focal T2*w
hypointensities with standardised T2*w intensity variances below auto-
matically derived thresholds to reduce thresholding artefacts. The output
of this method are basal ganglia T2*w and T2*w/T1w hypointensity
masks, where the latter presumably indicates regions of advanced
mineralisation. The effects of the outlier detection method and the con-
nected components filter on the segmentation results were investigated
with a custom-built phantom containing different models of basal
ganglia mineral deposits. The method was also validated with MRI data
from 98 community-dwelling older subjects in their seventies to assess
its ability to generate similarmasks to those produced by an experienced
rater.

The phantom experiments show that blooming artefacts around
the CaAlg gel beads increase their apparent diameter on T2*w MRI by
up to 1.6 times. The volume of the generated basal ganglia T2*w
hypointensity masks therefore reflects not only the volume of the
underlying mineral deposits but also their magnetic susceptibility (Bos
et al., 2003; Pintaske et al., 2006). In previous studies (Penke et al.,
2012), themagnetic susceptibility therefore likely acted as an additional
weight in the correlation analysis. Hence mineral deposits with the
same volume, but different magnetic susceptibility, possibly have a dif-
ferent impact on the correlation result. As themagnetic susceptibility of
mineral deposits can be determined with gradient-echo MRI it should
be possible to develop a correction method for blooming artefacts
(McAuley et al., 2011). Such a method could help to clarify the specific
impact of the chemical composition and extent of mineral deposits in
the ageing brain.

The unsupervisedmultivariate outlier detectionmethods rely on the
assumption that the co-registered T2*w and T1w signal intensities of
normal-appearing tissue resemble bivariate normal distributions with
robust distances which in turn resemble non-central χ2 distributions
(Hardin and Rocke, 2005). Although this assumption was not explicitly
checked, it can be concluded that it was reasonably well satisfied since
the automated method produced segmentation results that were in
substantial agreement with the reference masks of the phantom and
subjects. Furthermore, the T2*w sequence used in this study (GRASS)
was chosen over spoiled gradient echo sequences since it can produce
T2*w images with comparatively higher SNR (Bernstein et al., 2004),
which helps in assuring that the T2*w intensities of normal-appearing
tissue are normally distributed (Gudbjartsson and Patz, 1995). Addi-
tionally, the non-anatomical intensity variations caused by the B1 field
inhomogeneities (bias field) were corrected on T2*w and T1w MRI,
which can also significantly distort the image intensities, and hence
reduce the quality of the segmentation results as demonstrated with
the phantom results. Recent performance studies also show that the
adaptive variant of the unsupervised outlier detectionmethod produces
better results than the non-adaptive variant in the case of heavy tailed
or skewed multivariate distributions (Filzmoser, 2005). However,
further studies are required to explore the impact on the segmentation
results if the T2*w and T1w signal intensity distributions deviate from
bivariate normal distributions and if othermultivariate outlier detection
methods, such as non-parametric methods (Ben-Gal, 2010), could
improve the segmentation results.

The developed automated segmentation method for multifocal
T2*w hypointensities employs a novel filter, which preferentially
removes connected components that appear more homogenous on
T2*w MRI, i.e. are associated with a standardised T2*w intensity vari-
ance below a threshold q. The subject results confirm that this filter
markedly improved the spatial agreement between the automatically
generated and reference masks. These findings therefore suggest that
the rater, after segmenting basal ganglia T2*w hypointensities with
the semi-automated thresholding method (Valdés Hernández et al.,
2011), also excluded individual T2*w hypointensities that appeared
more homogenous onT2*wMRI. Additionally, the phantomexperiments
showed that the filter preferentially removed T2*whypointensities asso-
ciated with gel beads that were doped with N/1200 nm, and especially
with N/1200 nm and HA microcrystals. This suggests that the filter pos-
sibly excludes mineral deposits with a specific chemical composition,
such asmineral depositswith calcification, since thismakes them appear
more homogenous on T2*w MRI. However, further work is required to
explain the effects of the chemical composition of trace metal deposits
on the T2*w intensity variance. So far, the local intensity variance has
only been used as a quality measure for T1w MRI (Aja-Fernández et al.,
2006).

In this study the optimal connected components filter parameter
for segmenting the basal ganglia T2*w hypointensities in the LBC1936
subjects was derived in a 10-fold cross validation with the reference



Fig. 6.Volumetric and spatial agreement between basal ganglia T2*whypointensitymasks
from the automated segmentation method and the rater. Volumetric and spatial agree-
ment between the automatically generated basal ganglia T2*w hypointensity masks
with volumes VT2 ⁎ w,k

hypo,opt
and reference masks with volumes VT2 ⁎ w,k

hypo,ref
from the rater were

assessed with modified Bland–Altman plots. The upper plots (A) show the mask volume
differences over the average mask volumes and the lower plot (B) the Jaccard indices
(Eq. (6)) over the logarithmised average mask volumes. Subjects for which neither the
rater nor the method generated basal ganglia T2*w hypointensity masks were excluded
since the y-axis values were mathematically not defined. The trend in the data was esti-
matedwith quantile regression lines (Koenker and Hallock, 2001), whichwere calculated
for the 50th percentile (solid line), 25th and 75th percentiles (dashed lines), and 5th and
95th percentiles (dotted lines). Data points outside the 90% range were considered
outliers and are shown as red crosses. Quantile regression lines were censored if
their y-axis values exceeded the valid y-axis value ranges.
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masks of an experienced rater. However, as the optimal parameter de-
pends on the outlier detecting method and potentially other factors,
such as the T2*w sequence and main magnetic field strength, it might
be different for subsequent studies. The optimal connected components
filter parameter can then be estimated in two ways. As in this study, a
representative and random subject subset can be constructed, where
an experienced rater segments the basal ganglia T2*w hypointensities
and the optimal filter parameter is estimated with cross-validation. If
masks from an experienced rater are not available, a heuristic method
could possibly be used to estimate the optimal connected components
parameter. A phantom with the same basal ganglia mineralization
models as employed in the current study is needed to derive the
characteristic connected components filter functions (Fig. 4A). Here
an optimal value of the filter parameter was identified as where the
difference between the characteristic filter function of the gel beads
with N/250 nm and the average filter function of the gel beads with
N/1200 nm and N/1200 nm + HA was maximal. The additional
advantage of this approach is that the detection sensitivity for focal
mineralizations, as well as the size of the blooming artefacts can also
be quantified.

This study has several strengths. Firstly, our method was validated
with standard structural T2*w and T1w volumes from both a custom-
designed phantom and from a random sample of community-dwelling
older subjects with a very narrow age range. Secondly, the subject sam-
ple was carefully chosen to include a wide range of basal ganglia T2*w
hypointensities based on their appearance and morphology. Finally,
the experienced rater who manually segmented these basal ganglia
T2*w hypointensities was not involved in the selection process to
ensure an unbiased reference. This study design therefore ensures
that the developed automated segmentation method for T2*w
hypointensities is largely unbiased and can therefore be readily evaluated
in further studies of old age.

The presented automated method also has several limitations.
Firstly, it requires co-registered T1w volumes to (i) automatically
generate the ROI masks for all basal ganglia structures with FSL FIRST
(Patenaude et al., 2011), (ii) exclude artefacts, such as chronic
haemorrhages, and (iii) segment subregions of basal ganglia T2*w
hypointensities whichmight represent regions of advancedmineraliza-
tion. High-resolution T1w volumes are typically part of clinical MRI pro-
tocols and a sufficiently accurate registration to corresponding T2*w
volumes can often be achieved if the acquisition parameters are
optimised. However, in situations where T1w volumes are missing or
major registration artefacts are present the developed segmentation
method cannot be used in its present form. Secondly, the volume of
basal ganglia T2*w hypointensities, and hence the volume of the gener-
ated masks, is affected by the blooming artefact (Bos et al., 2003;
Pintaske et al., 2006). As noted above, the blooming artefact depends
on the magnetic susceptibility of the underlying tissue. However, it
also depends on scanner and MRI sequence parameters (Pintaske
et al., 2006), such as themainmagneticfield strength B0, the orientation
of the plane of view relative to B0, the echo time and the voxel size.
Studies which acquire MRI data on different scanners, with different
T2*w sequences or T2*w sequence parameters, therefore have to
correct their results for these factors. Finally, the MCD method
(Rousseeuw, 1999), which is part of the unsupervised outer detection
method for estimating the location and scatter of the bivariate T2*w
and T1w distributions, enforces an upper size limit on the basal ganglia
T2*w hypointensities, since it can only tolerate up to 50% outliers.
Therefore this method misclassifies basal ganglia T2*w hypointensities
that are larger than half the volume of the surrounding normal-
appearing tissue, as was the case for one subject in this study with
very large bilateral basal ganglia T2*w hypointensities. However, very
large basal ganglia T2*w hypointensities possibly have a non-ischemic
aetiology (Janaway et al., 2014;Morris et al., 1992) and therefore should
be analysed separately.

In conclusion, this paper presents a novel automated method for
segmenting basal ganglia T2*w hypointensities which consists of an
unsupervised outlier detection method and a connected components
filter to reduce thresholding artefacts. Data from a custom-built MRI
phantom with mineral deposit models and a random sample of older
subjects from the LBC1936 showed that this method was able to gener-
ate basal ganglia T2*w hypointensity masks that were in substantial
agreementwithmanually created referencemasks from anexperienced
rater. Thismethod could therefore be potentially useful in future studies
investigating relationships between basal ganglia T2*w hypointensities
and other features of small vessel disease and the ageing brain. However,
further testing of this method in other independent data sets is still
required to confirm its general validity.

image of Fig.�6
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Appendix A. Unsupervised outlier detection method for bivariate
data

The unsupervised outlier detection method (Filzmoser et al., 2005)
that was applied in this study was originally developed for exploration
geochemistry. Fig. 7 shows an overview of this method that in this
study was adapted for MRI data, where the input are co-registered
T2*w/T1w intensities from a ROI. The method involves two steps. First
it estimates the tolerance ellipse from the T2*w/T1w intensity distribu-
tion for classifying these T2*w/T1w intensities into outlier and normal-
appearing tissue intensities. Secondly, T2*w/T1w thresholds are derived
from the obtained tolerance ellipse for the segmentation of T2*w
hypointensities and their subregions that appear hypointense on T1w
MRI.

A.1. Estimation of the tolerance ellipse from the T2*w/T1w intensity
distribution

As shown in Fig. 7 the bivariate T2*w/T1w intensity distribution
are first transformed into a univariate robust distance distribution
from which a critical robust distance is derived, which represents the
tolerance ellipse in the bivariate intensity distribution space.

A.1.1. Transformation into the univariate robust distance space
Given the T2*w/T1w intensity tuples of all voxels i ∈ M

si ¼
si;T2�w
si;T1w

� �
; ðA:1Þ

the mean of all ROI tuples i ∈ Ml
ROI is denoted by

sμl ¼ sμl;T2�w
sμl;T1w

 !
; ðA:2Þ

and their covariance is denoted by

SΣl ¼
sσl;T2�w
� �2

rρl s
σ
l;T2�ws

σ
l;T1w

rρl s
σ
l;T2�ws

σ
l;T1w sσl;T1w

� �2
0
B@

1
CA; ðA:3Þ

where sl,T2 ⁎ w
σ , sl,T1wσ are the respective standard deviations and rl

ρ is the
cross correlation coefficient. In this study, the mean and covariance
were estimated with the Minimum Covariance Determinant (MCD)
estimator (Rousseeuw, 1999), which provides robust estimates of
these parameters and resists up to 50% outliers. The robust mean and
covariance were then used to calculate the robust distances (Rousseeuw
and Van Zomeren, 1990)

di sið Þ ¼ si−sμl
� �T SΣl

� �−1
si−sμl
� �

; ðA:4Þ

which represent the distances between the T2*w/T1w intensity distribu-
tion centre and each T2*w/T1w intensity tuple i ∈Ml

ROI.

A.1.2. Estimating a critical robust distance from the robust distance
distribution

The unsupervised outlier detection method is based on the as-
sumption that the T2*w/T1w intensities follow a bivariate normal
distribution, which is sufficiently satisfied in ROIs with signal-to-noise
ratios (SNRs) larger than 2 (Gudbjartsson and Patz, 1995). The robust
distances (Eq. (A.4)) then follow a non-central chi-square distribution
χ2(p, df = 2) with two degrees of freedom (Hardin and Rocke, 2005).
Signal intensity outliers have the highest robust distances and hence
are found in the right tail of theχ2 distribution above a critical distance

dcrit;nal ¼ χ2 p ¼ 0:975;df ¼ 2ð Þ: ðA:5Þ

The selection of the critical distance is crucial for separating extreme
values of distributions and outliers, while Filzmoser (2005) showed
that a refinement of the critical distance with an adaptive method is
more robust and leads to better results. This adaptive outlier detection
method uses the critical distance of the non-adaptive method dl

crit,na as
an initial estimate, which is then refined by considering the sample
size nl of the T2*w/T1w intensity distribution. Firstly, the difference
in the tails of the cumulative distribution function G of a chi-square
distribution χ2(df= 2) and the empirical distribution Gnl of the robust
distances di of ROI l is calculated. If no outliers are present then this
difference denoted by

ΔGtail
nl

¼ sup
d≥dcrit;na

l

G dð Þ−Gnl
dð Þ

� �þ
; ðA:6Þ

is expected to be lower than a critical differenceΔGtail;crit
nl

. Filzmoser et al.
(2005) derived the relationship between the sample size and the critical
differenceΔGtail;crit

nl
for normal distributions in computer simulations. For

bivariate normal distributions this relationship is

ΔGtail;crit
nl

¼ 0:234ffiffiffiffi
nl

p : ðA:7Þ

The refined critical robust distance is then

dcrit;adl ¼ Gn
−1 1−αtail

nl

� �
with αtail

nl
¼ 0 ΔGtail

nl
≤ΔGtail;crit

nl

ΔGtail
nl

ΔGtail
nl

NΔGtail;crit
nl

(
; ðA:8Þ

which has the desired property that for nl → ∞ the critical robust dis-
tance dlcrit,ad is equal to the robust distance of the sample that is furthers
away from the distribution centre since a distribution with infinite
number of sample does not have outliers but only extreme values.

A.2. Deriving T2*w and T1w thresholds from the critical robust distance

As illustrated in Fig. 7, the T2*w/T1w thresholds represent the min-
imum of all points of the estimated tolerance ellipse of the T2*w/T1w
intensity distribution. Given the previously estimated critical robust
distance dl

crit,m with m ∈ {na, ad}, these thresholds can be calculated
by solving Eq. (A.4) for si and calculating theminimum for each dimen-
sion

sthresh;ml;T2�w ¼ sμl;T2�w−sσl;T2�wd
⌣crit;m

l

sthresh;ml;T1w ¼ sμl;T1w−sσl;T1wd
⌣crit;m

l ;
ðA:9Þ
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Fig. 7. Automatic T2*w and T1w intensity threshold selection based on the T2*w/T1w intensity distribution outliers of a ROI. The T2*w/T1w intensity distribution of a ROI ismapped from
the two-dimensional intensity distribution space to the one-dimensional robust distance space by calculating the robust distance (Hardin and Rocke, 2005) between each T2*w/T1w in-
tensity pair and the centre of the distribution (red dot). An initial critical robust distance dlcrit is then estimated from a χ2 distribution (degrees of freedom= 2). In the case of the adaptive
variant of the outlier detectionmethod this distance is further refined (Filzmoser et al., 2005). Thefinal critical distance ismapped back to the two-dimensional intensity distribution space
where it represents a tolerance ellipse (cyan). T2*w/T1w intensity tuples on and outside this tolerance ellipse (orange dots) are considered to be associated with focal features, such as
basal ganglia T2*w hypointensities, whereas those inside the ellipse are considered to be associated with normal-appearing tissue. The hypointense outlier intensities on T2*w MRI
and T1w MRI are subsequently extracted with T2*w and T1w thresholds (purple) which are derived from the tolerance ellipse.
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Fig. 8. Optimal selection of the connected component filter parameter q with 10-fold
cross-validation. This flow diagram illustrates how the subject data was split into training
and validation sets in the 10-fold cross-validation. The optimal connected component fil-
ter parameter qoptwas then estimated in a grid search for each training set. This parameter
represents the connected component filter parameter q that maximises the Jaccard index
Jmed(q) (Eq. (C.1)), and hencemaximises the spatial agreement between the automatically
generatedmasks for the training set subjects and the corresponding referencemasks from
the rater. The estimated parameters qopt were subsequently used to segment the basal
ganglia T2*w hypointensities of the subjects in the corresponding validation sets.
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where d⌣crit;m
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
dcrit;ml

q
represents the z-score associated with the

critical robust distance.

Appendix B. Segmentation of basal ganglia T2*w hypointensities

Initial basal ganglia T2*w hypointensity masks were generated by
thresholding the T2*w intensities of all ROIs with the lowest T2*w
threshold, i.e. that of the globus pallidus. The connected components
of these masks were then identified and filtered based on their T2*w
intensity variance, which reduces segmentation artefacts, mostly
due to image noise. Subregions of the final masks that appear
hypointense on T1w MRI were also segmented since they possibly
indicate advanced mineralization, such as calcification (Valdés
Hernandéz et al., 2014).

Initial basal ganglia T2*w hypointensity masks

Mhypo;init
T2�w ¼ i∈MROIjsi;T2�wbsthresh;mgp;T2�w

n o
; ðB:1Þ

were obtained with the globus pallidus T2*w threshold sgp,T2 ⁎ w
thresh,m

(Eq. (A.9)). Then the connected components (six-connected
neighbourhood) of these masks, with the unique labels
h ∈ {1, 2, …, hmax} and the masks Mhypo;init

T2�w ⊂Mhypo;init
T2�w , were identified

with the Matlab function ‘bwlabeln()’. The locations of these connected
components within the basal ganglia were determined with the ROI
mask set MROI as described in Glatz et al. (2013). This yielded sets Hl

init

that contained the indices of all connected components located within
each ROI l.

The standardised T2*w intensity variance of a connected component
was defined as

ql;h ¼
shypo;σh;T2�w
� �2
snorm;σ loc

l;T2�w
� �2 with h∈Hinit

l : ðB:2Þ

The nominator represents the T2*w intensity variance of a connected
component and the denominator represents the local T2*w intensity
variance of the surrounding normal-appearing tissue. The latter was
defined as

snorm;σ loc

l;T2�w ¼ sσ
loc

i;T2�wji∈Mnorm
l


 �� �
0:5

; ðB:3Þ

where the local T2*w intensity variances of each voxel snorm;σ loc

i;T2�w were
obtained with the Matlab function ‘stdfilt()’ and the normal-appearing
tissue mask

Mnorm
l ¼ i∈MROI

l jdibdcrit;ml

n o
: ðB:4Þ

The standardised T2*w intensity variance ql,h therefore represents a
measure of how inhomogeneous a connected component appears on
T2*w MRI relative to the surrounding normal-appearing tissue.

To reduce segmentation artefacts the connected component filter of
the method removed connected components of the initial basal ganglia
T2*w hypointensity masks that appeared too homogenous on T2*w
MRI, i.e. connected components with a standardised T2*w intensity
variance below a threshold q. This yielded the final basal ganglia T2*w
hypointensity masks for each ROI l

Mhypo
l;T2�w ¼ ∪

h∈Hl

Mhypo;init
h;T2�w with Hl ¼ h∈Hinit

l jql;hN ¼ q
n o

: ðB:5Þ

Lastly, basal ganglia T2*w/T1w hypointensity masks

Mhypo
T1w ¼∪

∀l
i∈Mhypo

l;T2�wjsi;T1wbsthresh;ml;T1w

n o
; ðB:6Þ
which select subregions of the final basal ganglia T2*w hypointensity
masks that appear hypointense on T1w MRI, were segmented by
thresholding the T1w intensities selected byMl,T2 ⁎ w

hypo with the respective
thresholds sl,T1wthresh,m (Eq. (A.9)).
Appendix C. Ten fold cross-validation method for estimating the
optimal connected components filter parameter q

Fig. 8 illustrates the method for estimating the optimal connected
component filter parameter qopt for a given subject sample. Firstly,
the subject sample was randomized and split into 10 approximately
equally sized subsamples. Each subsample was used as a validation
set, whereas the remaining nine subsamples were combined into a
training set. The optimal filter parameter of a given training set was
then estimated with a grid search (Bergstra and Bengio, 2012),
where masks MT2 ⁎ w,k

hypo (b, m, q) for the basal ganglia T2*w
hypointensities of the training set subjects with index kwere generated
with the connected components filter parameters q=0, 0.1,…, 1.5. The
average spatial agreement between the generated and corresponding
reference masks was quantified with the median Jaccard index

Jmed qð Þ ¼ Jk qð Þð Þ0:5 with Jk qð Þ ¼
Mhypo

T2�w;k b;m; qð Þ∩Mhypo;re f
T2�w;k

��� ���
Mhypo

E2�w;k b;m; qð Þ∪Mhypo;re f
T2�w;k

��� ��� ; ðC:1Þ
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whereMT2 ⁎ w,k
hypo,ref denotes themanually created referencemasks. The filter

parameter that was associated with the highest median Jaccard index

qopt ¼ arg max
∀q

Jmed qð Þ; ðC:2Þ

was selected as the optimal filter parameter for the corresponding
validation set and subsequently used to create the basal ganglia
T2*w hypointensity masks MT2 ⁎ w,k

hypo,opt = MT2 ⁎ w,k
hypo (b, m, q = qopt) of the

corresponding validation set subjects, as well as the T2*w/T1w
hypointensity masks MT1w,k

hypo,opt = MT1w,k
hypo (b, m, q = qopt).
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