178 research outputs found

    Bulk supercrystalline ceramic-organic nanocomposites: New processing routines and insights on the mechanical behavior

    Get PDF
    In the strive to produce nature-inspired hierarchical materials with an enhanced combination of mechanical properties, supercrystalline ceramic-organic nanocomposites have been produced in bulk form and characterized from a variety of perspectives. Through an interdisciplinary collaboration at the crossroad between materials science, chemistry and mechanical engineering, a bottom-up approach has been designed. It consists of a sequence of self-assembly, pressing and heat treatment, and it leads to macroscopic poly-supercrystalline materials with exceptional mechanical properties and behavior. The crosslinking of the organic phase induced by the heat treatment does not only increase the materials’ stiffness, hardness and strength (elastic modulus up to 70 GPa, hardness up to 5 GPa and bending strength up to 630 MPa), but alters also their constitutive response. Fracture toughness values higher than theoretical predictions have emerged (~ 1 MPa·m1/2), implying the presence of extrinsic toughening mechanisms, such as the crack-path deviation observed at indents’ corners. Ex-situ nanoindentation and in-situ SAXS/microcompression studies also suggest the possibility for supercrystalline materials to accommodate compressibility and plastic-like deformation. Defects analogous to the ones typically observed in crystalline lattices, such as stacking faults, dislocations and slip bands, are detected at the superlattice scale (even if one order of magnitude larger than the atomic one, and with interactions among the nano-building blocks controlled by the organic phase). Correlations between defects, processing and mechanical properties have been drawn by adapting the classic theories of mechanical behavior of materials. These same materials are additionally being used as bricks for the development of novel hierarchical composites, via additive manufacturing or fluidized bed techniques. Please click Additional Files below to see the full abstract

    Had i politiske debatter online og offline: Hvem stĂ„r for hadet – og hvem rammer hadet?

    Get PDF
    Hadefuld adfĂŠrd pĂ„ de sociale medier i forbindelse med eksempelvis politiske diskussioner anses for et stigende samfundsproblem. I denne artikel spĂžrger vi: Hvem er udĂžverne af det politiske had pĂ„ internettet – og hvem er ofrene? Og er udĂžverne af og ofrene for had anderledes pĂ„ internettet end udenfor internettet? Analyserne viser, at de personer, som optrĂŠder hadefuldt og rammes af had i forbindelse med politiske diskussioner, i hĂžj grad er de samme bĂ„de online og offline. Aggressiv adfĂŠrd er generelt mere udbredt blandt unge mĂŠnd, og analyserne viser, at det ogsĂ„ fĂžrst og fremmest er unge mĂŠnd, der optrĂŠder hadefuldt bĂ„de online og offline. I overensstemmelse med viden om aggression generelt retter hadet sig ogsĂ„ fĂžrst og fremmest mod andre unge mĂŠnd. Internethad ser sĂ„ledes ikke ud til at vĂŠre en sĂŠrlig form for had eller aggressivitet. De, der er aggressive offline, er ogsĂ„ aggressive online, og de gĂ„r efter de samme ofre begge steder

    Nanoindentation creep of supercrystalline nanocomposites

    Get PDF
    Supercrystalline nanocomposites (SCNCs) are inorganic-organic hybrid materials with a unique periodic nanostructure, and thus they have been gaining growing attention for their intriguing functional properties and parallelisms with hierarchical biomaterials. Their mechanical behavior remains, however, poorly understood, even though its understanding and control are important to allow SCNCs’ implementation into devices. An important aspect that has not been tackled yet is their time-dependent deformation behavior, which is nevertheless expected to play an important role in materials containing such a distribution of organic phase. Hereby, we report on the creep of ceramic-organic SCNCs with varying degrees of organic crosslinking, as assessed via nanoindentation. Creep strains and their partial recoverability are observed, hinting at the co-presence of viscoelasticity and viscoplasticity, and a clear effect of crosslinking in decreasing the overall material deformability emerges. We rationalize our experimental observations with the analysis of stress exponent and activation volume, resulting in a power-law breakdown behavior and governing deformation mechanisms occurring at the organic sub-nm interfaces scale, as rearrangement of organic ligands. The set of results is reinforced by the evaluation of the strain rate sensitivity via strain rate jump tests, and the assessment of the effect of oscillations during continuous stiffness measurement mode.</p

    Constitutive and fracture behavior of ultra-strong supercrystalline nanocomposites

    Get PDF
    Supercrystalline nanocomposites are a new class of hybrid and nanostructured materials that can reach exceptional mechanical strength and can be fabricated at low temperatures. Hierarchically arranged, they bridge the gap from the nano- to the macro-scale. Even though their mechanical properties are starting to be characterized, their constitutive behavior is still largely unexplored. Here, the mechanical behavior of supercrystalline nanocomposites of iron oxide nanoparticles, surface-functionalized with oleic acid and oleyl phosphate ligands, is investigated in both bending and compression, with loading-unloading tests. A new bar geometry is implemented to better detect deformation prior to unstable crack propagation, and notched bending bars are tested to evaluate fracture toughness. Micro-mechanical tests result in the values of strength and elastic modulus that are extremely high for supercrystals, reaching record-high numbers in the oleic acid-based nanocomposites, which also show a significant tension-compression asymmetry. The constitutive behavior of both materials is predominantly linear elastic, with some more marked nonlinearities arising in the oleyl phosphate-based nanocomposites. The fracture toughness of both types of nanocomposites, ∌0.3 MPa√m, suggests that extrinsic toughening, associated with both material composition and nanostructure, plays an important role. Fractographic observations reveal analogies with shear and cleavage in atomic crystals. The influence of material composition, nanostructure, and processing method on the mechanical behavior of the nanocomposites is analyzed.</p

    Verification of high-level transformations with inductive refinement types

    Get PDF
    International audienceHigh-level transformation languages like Rascal include expressive features for manipulating large abstract syntax trees: first-class traversals, expressive pattern matching, backtrack-ing and generalized iterators. We present the design and implementation of an abstract interpretation tool, Rabit, for verifying inductive type and shape properties for transformations written in such languages. We describe how to perform abstract interpretation based on operational semantics, specifically focusing on the challenges arising when analyzing the expressive traversals and pattern matching. Finally, we evaluate Rabit on a series of transformations (normaliza-tion, desugaring, refactoring, code generators, type inference, etc.) showing that we can effectively verify stated properties. CCS Concepts ‱ Software and its engineering → General programming languages; ‱ Social and professional topics → History of programming languages

    Dorsolateral prefrontal lesions do not impair tests of scene learning and decision-making that require frontal–temporal interaction

    Get PDF
    Theories of dorsolateral prefrontal cortex (DLPFC) involvement in cognitive function variously emphasize its involvement in rule implementation, cognitive control, or working and/or spatial memory. These theories predict broad effects of DLPFC lesions on tests of visual learning and memory. We evaluated the effects of DLPFC lesions (including both banks of the principal sulcus) in rhesus monkeys on tests of scene learning and strategy implementation that are severely impaired following crossed unilateral lesions of frontal cortex and inferotemporal cortex. Dorsolateral lesions had no effect on learning of new scene problems postoperatively, or on the implementation of preoperatively acquired strategies. They were also without effect on the ability to adjust choice behaviour in response to a change in reinforcer value, a capacity that requires interaction between the amygdala and frontal lobe. These intact abilities following DLPFC damage support specialization of function within the prefrontal cortex, and suggest that many aspects of memory and strategic and goal-directed behaviour can survive ablation of this structure

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Dynamic cerebral autoregulation reproducibility is affected by physiological variability

    Get PDF
    Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of > 0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p less than 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ? 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters. Copyright © 2019 Sanders, Elting, Panerai, Aries, Bor-Seng-Shu, Caicedo, Chacon, Gommer, Van Huffel, Jara, Kostoglou, Mahdi, Marmarelis, Mitsis, MĂŒller, Nikolic, Nogueira, Payne, Puppo, Shin, Simpson, Tarumi, Yelicich, Zhang and Claassen

    National identity predicts public health support during a global pandemic

    Get PDF
    Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = −0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics
    • 

    corecore