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Abstract
High-level transformation languages like Rascal include ex-

pressive features for manipulating large abstract syntax trees:

first-class traversals, expressive pattern matching, backtrack-

ing and generalized iterators. We present the design and

implementation of an abstract interpretation tool, Rabit, for

verifying inductive type and shape properties for transfor-

mations written in such languages. We describe how to per-

form abstract interpretation based on operational semantics,

specifically focusing on the challenges arising when analyz-

ing the expressive traversals and pattern matching. Finally,

we evaluate Rabit on a series of transformations (normaliza-

tion, desugaring, refactoring, code generators, type inference,

etc.) showing that we can effectively verify stated properties.
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1 Introduction
Transformations play a central role in software development.

They are used, amongst others, for desugaring, model trans-

formations, refactoring, and code generation. The artifacts

involved in transformations—e.g., structured data, domain-

specific models, and code—often have large abstract syn-

tax, spanning hundreds of syntactic elements, and a corre-

spondingly rich semantics. Thus, writing transformations

is a tedious and error-prone process. Specialized languages

and frameworks with high-level features have been devel-

oped to address this challenge of writing and maintain-

ing transformations. These languages include Rascal [28],

Stratego/XT [12], TXL [16], Uniplate [31] for Haskell, and

Kiama [43] for Scala. For example, Rascal combines a func-

tional core language supporting state and exceptions, with

constructs for processing of large structures.

1 public Script flattenBlocks(Script s) {
2 solve(s) {
3 s = bottom-up visit(s) {
4 case stmtList: [*xs,block(ys),*zs] =>
5 xs + ys + zs
6 }
7 }
8 return s;
9 }

Figure 1. Transformation in Rascal that flattens all nested

blocks in a statement

Figure 1 shows an example Rascal transformation program

taken from a PHP analyzer.
1
This transformation program

recursively flattens all blocks in a list of statements. The

program uses the following core Rascal features:

• A visitor (visit) to traverse and rewrite all statement

lists containing a block to a flat list of statements. Vis-

itors support various strategies, like the bottom-up
strategy that traverses the abstract syntax tree starting

from leaves toward the root.

1https://github.com/cwi-swat/php-analysis
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• An expressive patternmatching language is used to non-
deterministically find blocks inside a list of statements.

The starred variable patterns *xs and *zs match arbi-

trary number of elements in the list, respectively be-

fore and after the block(ys) element. Rascal supports

non-linear matching, negative matching and specify-

ing patterns that match deeply nested values.

• The solve-loop (solve) performing the rewrite until a

fixed point is reached (the value of s stops changing).

To rule out errors in transformations, we propose a static

analysis for enforcing type and shape properties, so that

target transformations produce output adhering to particular

shape constraints. For our PHP example, this would include:

• The transformation preserves the constructors used in

the input: does not add or remove new types of PHP

statements.

• The transformation produces flat statement lists, i.e.,

lists that do not recursively contain any block.

To ensure such properties, a verification technique must rea-

son about shapes of inductive data—also inside collections

such as sets and maps—while still maintaining soundness

and precision. It must also track other important aspects,

like cardinality of collections, which interact with target lan-

guage operations including pattern matching and iteration.

In this paper, we address the problem of verifying type

and shape properties for high-level transformations written

in Rascal and similar languages. We show how to design and

implement a static analysis based on abstract interpretation.

Concretely, our contributions are:

1. An abstract interpretation-based static analyzer—Rascal

ABstract Interpretation Tool (Rabit)—that supports in-

ferring types and inductive shapes for a large subset

of Rascal.

2. An evaluation of Rabit on several program transfor-

mations: refactoring, desugaring, normalization algo-

rithm, code generator, and language implementation

of an expression language.

3. A modular design for abstract shape domains, that al-

lows extending and replacing abstractions for concrete

element types, e.g. extending the abstraction for lists

to include length in addition to shape of contents.

4. Schmidt-style abstract operational semantics [40] for a

significant subset of Rascal adapting the idea of trace
memoization to support arbitrary recursive calls with

input from infinite domains.

Together, these contributions show feasibility of applying ab-

stract interpretation for constructing analyses for expressive

transformation languages and properties.

1 data Nat = zero() | suc(Nat pred);
2 data Expr = var(str nm) | cst(Nat vl)
3 | mult(Expr el, Expr er);
4

5 Expr simplify(Expr expr) =
6 bottom-up visit (expr) {
7 case mult(cst(zero()), y) => cst(zero())
8 case mult(x, cst(zero())) => cst(zero())
9 };

Figure 2. The running example: eliminating multiplications

by zero from expressions

We proceed by presenting a running example in Sect. 2.

We introduce the key constructs of Rascal in Sect. 3. Sec-

tion 4 describes the modular construction of abstract do-

mains. Sections 5 to 8 describe abstract semantics. We evalu-

ate the analyzer on realistic transformations, reporting re-

sults in Sect. 9. Sections 10 and 11 discuss related papers and

conclude.

2 Motivation and Overview
Verifying types and state properties such as the ones stated

for the program of Fig. 1 poses the following key challenges:

• The programs use heterogeneous inductive data types,
and contain collections such as lists, maps and sets, and

basic data such as integers and strings. This compli-

cates construction of the abstract domains, since one

shall model interaction between these different types

while maintaining precision.

• The traversal of syntax trees depends heavily on the

type and shape of input, on a complex program state,
and involves unbounded recursion. This challenges the
inference of approximate invariants in a procedure

that both terminates and provides useful results.

• Backtracking and exceptions in large programs intro-

duce the possibility of state-dependent non-local jumps.
This makes it difficult to statically calculate the con-

trol flow of target programs and have a compositional

denotational semantics, instead of an operational one.

Figure 2 presents a small pedagogical example using visitors.

The program performs expression simplification by travers-

ing a syntax tree bottom-up and reducing multiplications by

constant zero. We now survey the analysis techniques con-

tributed in this paper, explaining them using this example.

Inductive Refinement Types. Rabit works by inferring an

inductive refinement type representing the shape of possible

output of a transformation given the shape of its input. It does

this by interpreting the simplification program abstractly,

considering all possible paths the program can take for values

satisfying the input shape (any expression of type Expr in
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this case). The result of running Rabit on this case is:

success cst (Nat) ≀ var (str) ≀mult (Expr′, Expr′)

fail cst (Nat) ≀ var (str) ≀mult (Expr′, Expr′)

where Expr′ = cst (suc (Nat)) ≀ var (str) ≀mult (Expr′, Expr′).
We briefly interpret how to read this type. The bar ≀ de-

notes a choice between alternative constructors. If the input

was rewritten during traversal (success, the first line) then
the resulting syntax tree contains no multiplications by zero.
All multiplications may only involve Expr′, which disallows

the zero constant at the top level. Observe how the last al-

ternative mult (Expr′, Expr′) contains only expressions of

type Expr′, which in turn only allows multiplications by

constants constructed using suc (Nat) (that is ≥ 1). If the tra-

versal failed to match (fail, the second line), then the input

did not contain any multiplication by zero to begin with and

so does not the output, which has not been rewritten.

The success and failure happen to be the same for our

example, but this is not necessarily always the case. Keeping

separate result values allows retaining precision throughout

the traversal, better reflecting concrete execution paths. We

now proceed discussing how Rabit can infer this shape using

abstract interpretation.

Abstractly Interpreting Traversals The core idea of ab-

stractly executing a traversal is similar to concrete execu-

tion: we recursively traverse the input structure and rewrite

the values that match target patterns. However, because

of abstraction we must make sure to take into account all

applicable paths. Figure 3 shows the execution tree of the

traversal on the simplification example (Fig. 2) when it starts

with shapemult (cst (Nat) , cst (Nat)). Since there is only one
constructor, it will initially recurse down to traverse the con-

tained values (children) creating a new recursion node (yel-

low, light shaded) in the figure (ii) containing the left child

cst (Nat), and then recurse again to create a node (iii) con-

taining Nat. Observe here that Nat is an abstract type with

two possible constructors (zero, suc (·)), and it is unknown at

time of abstract interpretation, which of these constructors

we have. When Rabit hits a type or a choice between alter-

native constructors, it explores each alternative separately

creating new partition nodes (blue, darker). In our example

we partition the Nat type into its constructors zero (node

iv) and suc (Nat) (node v). The zero case now represents the

first case without children and we can run the visitor oper-

ations on it. Since no pattern matches zero it will return a

fail zero result indicating that it has not been rewritten. For

the suc (Nat) case it will try to recurse down toNat (node vi)
which is equal to (node iii). Here, we observe a problem: if we

continue our traversal algorithm as is, we will not terminate

and get a result. To provide a terminating algorithm we will

resort to using trace memoization.

Partition-driven Trace Memoization The idea is to de-

tect the paths where execution recursively meets similar

mult (cst (Nat) , cst (Nat))
i

cst (Nat)
ii

recurs
e

· · ·

recurse

Nat iii

recurse

zero
iv

suc (Nat)
v

parti
tion partition

fail ze
ro

Nat vi

recurse

...
...

partiti
on partition

Figure 3. Naively abstractly interpreting the sim-

plification example from Fig. 2 with initial input

mult (cst (Nat) , cst (Nat)). The procedure does not

terminate because of infinite recursion on Nat.

input, merging the new recursive node with the similar pre-

vious one, thus creating a loop in the execution tree [38, 40].

This loop is then resolved by a fixed-point iteration.

In Rabit, we propose partition-driven trace memoization,
which works with potentially unbounded input like the in-

ductive type refinements that are supported by our abstrac-

tion. We detect cycles by maintaining a memoization map
which for each type—used for partitioning—stores the last

traversed value (input) and the last result produced for this

value (output). This memoization map is initialized to map

all types to the bottom element (⊥) for both input and output.

The evaluation is modified to use the memoization map, so

it checks on each iteration the input i against the map:

• If the last processed refinement type representing the

input i ′ is greater than the current input (i ′ ⊒ i), then
it uses the corresponding output; i.e., we found a hit

in the memoization map.

• Otherwise, it will merge the last processed and cur-

rent input refinement types to a new value i ′′ = i ′∇i ,
update the memoization map and continue execution

with i ′′. The operation ∇ is called a widening; it en-
sures that the result is an upper bound of its inputs,

i.e., i ′ ⊑ i ′′ ⊒ i and that the merging will eventually

terminate for the increasing chain of values. The mem-

oization map is updated to map the general type of i ′′

(not refined, for instance Nat) to map to a pair (i ′′,o),
where the first component denotes the new input i ′′

refinement type and the second component denotes

the corresponding output o refinement type; initially, o
is set to ⊥ and then changed to the result of executing

input i ′′ repeatedly until a fixed-point is reached.

We demonstrate the trace memoization and fixed-point itera-

tion procedures on Nat in Fig. 4, beginning with the leftmost

tree. The expected result is fail Nat, meaning that no pat-

tern has matched, no rewrite has happened, and a value of
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type Nat is returned, since the simplification program only

introduces changes to values of type Expr.
We show the memoization map inside a framed orange

box. The result of the widening is presented below the mem-

oization map. In all cases the widening in Fig. 4 is trivial, as

it happens against⊥. The final line in node 1 stores the value

oprev produced by the previous iteration of the traversal, to

establish whether a fixed point has been reached (⊥ initially).

Trace Partitioning We partition [36] the abstract value

Nat along its constructors: zero and suc (·) (Fig. 4). This par-
titioning is key to maintain precision during the abstract

interpretation. As in Fig. 3, the left branch fails immediately,

since no pattern in Fig. 2 matches zero. The right branch

descends into a new recursion over Nat, with an updated

memoization table. This run terminates, due to a hit in the

memoization map, returning ⊥. After returning, the value of

suc (Nat) should be reconstructed with the result of travers-

ing the child Nat, but since the result is ⊥ there is no value

to reconstruct with, so ⊥ is just propagated upwards. At the

return to the last widening node, the values are joined, and

widen the previous iteration result oprev (the dotted arrow on

top). This process repeats in the second and third iterations,

but now the reconstruction in node 3 succeeds: the child Nat
is replaced by zero and fail suc (zero) is returned (dashed

arrow from 3 to 1). In the third iteration, we join and widen

the following components (cf. oprev and the dashed arrows

incoming into node 1 in the rightmost column):

[zero ≀ suc (zero) ∇ (zero ⊔ suc (zero≀suc (zero)))] = Nat

Here, the used widening operator [18] accelerates the con-

vergence by increasing the value to represent the entire type

Nat. It is easy to convince yourself, by following the same

recursion steps as in the figure, that the next iteration, us-

ing oprev = Nat will produce Nat again, arriving at a fixed

point. Observe, how consulting the memoization map, and

widening the current value accordingly, allowed us to avoid

infinite recursion over unfoldings of Nat.

Nesting Fixed Point Iterations. When inductive shapes

(e.g., Expr) refer to other inductive shapes (e.g.,Nat), it is nec-
essary to run nested fixed-point iterations to solve recursion

at each level. Figure 5 returns to themore high-level fragment

of the traversal of Expr startingwithmult (cst (Nat) , cst (Nat))
as in Fig. 3. We follow the recursion tree along nodes 5, 6, 7, 8,
9, 10, 9, 6 with the same rules as in Fig. 4. In node 10 we run

a nested fixed point iteration on Nat, already discussed in

Fig. 4, so we just include the final result.

Type Refinement. The output of the first iteration in node 6

is fail cst (Nat), which becomes the new oprev, and the second
iteration begins (to the right). After the widening the input is

partitioned into e (node 7) and cst (Nat)(node elided). When

the second iteration returns to node 7 we have the follow-

ing reconstructed value:mult (cst (Nat) , cst (Nat)). Contrast

this with lines 6-7 in Fig. 2, to see that running the abstract

value against this pattern might actually produce success.
In order to obtain precise result shapes, we refine the input

values when they fail to match a pattern. Our abstract in-

terpreter produces a refinement of the type, by running it

through the pattern matching, giving:

success cst (Nat)

fail mult (cst (suc (Nat)) , cst (suc (Nat)))

The result means, that if the pattern match succeeds then it

produces an expression of type cst (Nat). More interestingly,

if the matching failed neither the left nor the right argument

of mult (·, ·) could have contained the constant zero—the
interpreter captured some aspect of the semantics of the pro-

gram by refining the input type. Naturally, from this point on

the recursion and iteration continues, but we shall abandon

the example, and move on to formal developments.

3 Formal Language
The presented technique is meant to be general and applica-

ble to many high-level transformation languages. However,

to keep the presentation concise, we focus on few key con-

structs from Rascal [28], relying on the concrete semantics

from Rascal Light [2].

We consider algebraic data types (at) and finite sets (set⟨t⟩)
of elements of type t . Each algebraic data type at has a set of
unique constructors. Each constructor k(t) has a fixed set of

typed parameters. The language includes sub-typing, with

void and value as bottom and top types respectively.

t ∈ TypeF void | set⟨t⟩ | at | value

We consider the following subset of Rascal expressions: From

left to right we have: variable access, assignments, sequenc-

ing, constructor expressions, set literal expressions, matching

failure expression, and bottom-up visitors:

e F x ∈ Var | x = e | e; e | k(e) | {e} | fail | visit e cs
cs F case p ⇒ e

Visitors are a key construct in Rascal. A visitor visit e cs
traverses recursively the value obtained by evaluating e (any
combination of simple values, data type values and collec-

tions). During the traversal, case expression cs are applied
to the nodes, and the values matching target patterns are

rewritten. We will discuss a concrete subset of patterns p
further in Sect. 6. For brevity, we only discuss bottom-up

visitors, but Rabit (Sect. 9) supports all strategies of Rascal.

Notation We write (x ,y) ∈ f to denote the pair (x ,y) such
that x ∈dom f and y= f (x). Abstract semantic components,

sets, and operations are marked with a hat: â. A sequence of

e1, . . . , en is contracted using an underlining e . The empty

sequence is written by ε , and concatenation of sequences e1
and e2 is written e1, e2. Notation is lifted to sequences in an

intuitive manner: for example given a sequence v , the value
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input: Nat
Nat 7→⊥, ⊥

widen:⊥∇Nat = Nat
oprev = ⊥

1

zero 2 suc (Nat)
3

pa
rt.

part.fa
il
ze
ro

input: Nat
Nat 7→Nat, ⊥

4

recursehit:⊥

no
re
co
ns
tr
uc
ti
on

:⊥

recurse

input: Nat
Nat 7→⊥, ⊥

widen:⊥∇Nat = Nat
oprev = fail zero

1

output:
fail⊥∇(zero⊔⊥) = fail zero

zero 2 suc (Nat)
3

pa
rt.

partition

fa
il
ze
ro

input: Nat
Nat 7→Nat, fail zero

4

recursehit:
fail zero

re
co
ns
tr
uc
ti
on

:
fa
il
su
c
( z
er
o)

input: Nat
Nat 7→⊥, ⊥

widen:⊥∇Nat = Nat
oprev = fail zero ≀ suc (zero)

1

output:
fail zero∇(zero⊔suc (zero)) = fail zero ≀ suc (zero)

zero suc (Nat)
3

pa
rt.

part.fa
il
ze
ro

input: Nat
Nat 7→Nat, fail zero≀suc (zero)

4

recurse

hit:fail zero
≀ suc (zero) re

co
ns
tr
uc
ti
on

:
fa
il
su
c
( z
er
o≀
su
c
( z
er
o)
)

2

· · · fail Nat

Figure 4. Three iterations of a fixed point computation for input Nat. Iterations are separated by dotted arrows on top

input: e = mult (cst (Nat) , cst (Nat))
Expr 7→⊥, ⊥
Nat 7→⊥, ⊥

widen:⊥∇e = e

oprev = ⊥
5

input: cst (Nat)
Expr 7→e, ⊥
Nat 7→⊥, ⊥

widen: e∇cst (Nat) = e ≀ cst (Nat)
oprev = ⊥

6

re
cu
rs
e

· · ·

recurse

e
7

cst (Nat)
9

pa
rt
. partition

input: cst (Nat)
Expr 7→e ≀ cst (Nat) , ⊥
Nat 7→⊥, ⊥

8

re
cu
rs
e

hit
:⊥

no
reconstr.: ⊥

input:
Nat 10

fail N
at

re
co
ns
tr
uc
tio

n:
fa
il
cs
t (
N
at
)

input: cst (Nat)
Expr 7→e, ⊥
Nat 7→⊥, ⊥

widen: e∇cst (Nat) = e ≀ cst (Nat)
oprev = fail cst (Nat)

6

output:
fail⊥∇(⊥ ⊔ cst (Nat)) = fail cst (Nat)

e
7

· · ·

pa
rt
. part.

input: cst (Nat)
Expr 7→e ≀ cst (Nat) , fail cst (Nat)
Nat 7→⊥, ⊥

8

input: cst (Nat)
Expr 7→e ≀ cst (Nat) , fail cst (Nat)
Nat 7→⊥, ⊥

11

rec
urs
e recurse

hit:

fail
cst
(Na

t)

hit: fail cst (Nat)

reconstruction:
mult (cst (Nat) , cst (Nat))

type
refinement

Figure 5. A prefix of the abstract interpreter run for e = mult (cst (Nat) , cst (Nat)). Fragments of two iterations involving

node 6 are shown, separated by a dotted arrow.

vi denotes the ith element in the sequence, and v :t denotes
the sequence v1 :t1, . . . ,vn :tn .

4 Abstract Domains
Our abstract domains are designed for modular composition.

Modularity is key for transformation languages, which ma-

nipulate a large variety of values. The design allows easily

replacing abstract domains for particular types of values,

as well as adding support for new value types. We want to

construct an abstract value domain v̂s ∈ �ValueShape which
captures inductive refinement types of form:

atr = k1(v̂s1) ≀ · · · ≀ kn(v̂sn)

where each value v̂si can possibly recursively refer to atr .
Below, we define abstract domains for sets, data types and

recursively defined domains. The modular domain design

generalizes parameterized domains [17] to follow a design

inspired by the modular construction of types and domains

[8, 15, 41]. The idea is to define domains parametrically—i.e.

in the form F̂(̂E)—so that abstract domains for subcompo-

nents are taken as parameters, and explicit recursion is han-

dled separately. We use standard domain combinators [48] to

combine individual domains into the abstract value domain.

Set Shape Domain. Let Set(E) denote the domain of sets

consisting of elements taken from E. We define abstract finite

sets using abstract elements {ê}[l ;u] from a parameterized

domain
�SetShape(̂E). The component from the parameter

domain (̂e ∈ Ê) represents the abstraction of the shape of

elements, and a non-negative interval component [l ;u] ∈�Interval+ is used to abstract over the cardinality (so l ,u ∈ R+
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and l ≤ u). The abstract set element acts as a reduced product

between ê and [l ;u] and the lattice operations follow directly.

Given a concretization function for the abstract content

domain γÊ ∈ Ê → ℘ (E), we can define a concretization

function for the abstract set shape domain to possible finite

sets of concrete elements γŜS ∈
�SetShape(̂E) → ℘ (Set (E)):

γŜS({ê}[l ;u]) =
{
es

�� es ⊆ γÊ (̂e) ∧ |es | ∈ γ̂I([l ;u])}
Example 4.1. Let �Interval be a domain of intervals of inte-

gers (a standard abstraction over integers). We can concretize

abstract elements from
�SetShape(�Interval) to a set of possi-

ble sets of integers from ℘ (Set (Z)) as follows:

γŜS({[42; 43]}[1;2]) = {{42}, {43}, {42, 43}}

Data Shape Domain. Inductive refinement types are de-

fined as a generalization of refinement types [24, 39, 50] that

inductively constrain the possible constructors and the con-

tent in a data structure. We use a parameterized abstraction

of data types
�DataShape(̂E), whose parameter Ê abstracts

over the shape of constructor arguments:

d̂∈ �DataShape(̂E) = {⊥D̂S}∪{k1(e1)≀ . . . ≀kn(en) | ei∈Ê}∪{⊤D̂S}

Wehave the least element⊥D̂S and top element⊤D̂S elements—

respectively representing no data types value and all data

type values—and otherwise a non-empty choice between

unique (all different) constructors of the same algebraic data

type k1(e1) ≀ · · · ≀ kn(en) (shortened k(e)). We can treat the

constructor choice as a finite map [k1 7→ e1, . . . ,kn 7→ en],
and then directly define our lattice operations point-wise.

Given a concretization function for the concrete content

domain γÊ ∈ Ê → ℘ (E), we can create a concretization

function for the data shape domain

γD̂S ∈
�DataShape(̂E) → ℘ (Data(E))

where Data(E) =
{
k(v)

�� ∃ a type at. k(v) ∈ JatK ∧v ∈ E
}
.

The concretization is defined as follows:

γD̂S(⊥D̂S) = ∅ γD̂S(⊤D̂S) = Data(E)

γD̂S(k1(e1) ≀ · · · ≀ kn(en)) =
{
ki (v)

��� i ∈ [1, n] ∧v ∈ γÊ(ei )}
Example 4.2. We can concretize abstract data elements�DataShape(�Interval) to a set of possible concrete data values
℘ (Data(Z)). Consider values from the algebraic data type:

data errorloc = repl() | linecol(int, int)

We can concretize abstracting elements as follows:

γD̂S(repl() ≀ linecol([1; 1], [3; 4])) =

{repl(), linecol(1, 3), linecol(1, 4)}

Recursive shapes Weextend our abstract domains to cover

recursive structures such as lists and trees. Given a type

expression F(X ) with a variable X , we construct the ab-

stract domain as the solution to the recursive equation X =
F(X ) [41, 44, 48], obtained by iterating the induced map F
over the empty domain 0 and adjoining a new top element

to the limit domain. The concretization function of the recur-

sive domain follows directly from the concretization function

of the underlying functor domain.

Example 4.3. We can concretize abstract elements of the

refinement type from our running example:

γD̂S(Expr
e ) =


2︷                  ︸︸                  ︷

cst(suc(suc(zero))),mult(2, 2),

mult(mult(2, 2), 2), . . .


where Expre = cst(suc(suc(zero))) ≀ mult(Expre , Expre ) In
particular, our abstract element represents the set of all mul-

tiplications of the constant 2.

Value Domains. We presented the required components

for abstracting individual types, and now all that is left is

putting everything together. We construct our value shape

domain using choice and recursive domain equations:�ValueShape =�SetShape( �ValueShape) ⊕ �DataShape( �ValueShape)

Similarly, we have the corresponding concrete shape domain:

Value = Set (Value) ⊎ Data(Value)

We then have a concretization functionγV̂S ∈
�ValueShape→

℘ (Value), which follows directly from the previously defined

concretization functions.

4.1 Abstract State Domains
We now explain how to construct abstractions of states and

results when executing Rascal programs.

Abstract Store Domain. Tracking assignments of variables

is important since matching variable patterns depends on

the value being assigned in the store:

σ̂ ∈ �Store = Var→ {ff,tt} × �ValueShape

For a variable x we get σ̂ (x) = (b, v̂s) where b is true if x
might be unassigned, and false otherwise (when x is defi-

nitely assigned). The second component, v̂s is a shape ap-
proximating a possible value of x .
We lift the orderings and lattice operations point-wise

from the value shape domain to abstract stores. We define

the concretization function γ�Store ∈ �Store→ ℘ (Store) as:
γ�Store(σ̂ ) =

 σ
�������

∀x ,b, v̂s. σ̂ (x) = (b, v̂s) ⇒
(¬b ⇒ x ∈ dom σ )

∧ (x ∈ dom σ ⇒ σ (x) ∈ γV̂(v̂s))
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e ; σ ===⇒
expr

rest resv ; σ ′ e ; σ̂ ====⇒
a-expr

R̂es

same syntax

abstracts input store

abstracts over sets of result values and stores

Figure 6. Relating concrete semantics (left) to abstract se-

mantics (right).

Abstract Result Domain. Traditionally, abstract control
flow is handled using a collecting denotational semantics

with continuations, or by explicitly constructing a control

flow graph. These methods are non-trivial to apply for a rich

language like Rascal, especially considering backtracking,

exceptions and data-dependent control flow introduced by

visitors. A nice side-effect of Schmidt-style abstract interpre-

tation is that it allows abstracting control flow directly.

We model different type of results—successes, pattern

match failures, errors directly in a �ResSet domain which

keeps track of possible results with each its own separate

store. Keeping separate stores is important to maintain pre-

cision around different paths:

rest ∈ �ResTypeF success | exres

exres F fail | error r̂esv ∈ �ResValF · | v̂s
R̂es ∈ �ResSet = �ResType⇀ �ResVal ×�Store

The lattice operations are lifted directly from the target value

domains and store domains. We define the concretization

function γR̂S ∈
�ResultSet→ ℘ (Result × Store):

γR̂S(R̂es) =

{
(rest resv,σ )

����� (rest, (r̂esv, σ̂ )) ∈ R̂es ∧

resv ∈ γR̂V(r̂esv) ∧ σ ∈ γ�Store(σ̂ )
}

5 Abstract Semantics
A distinguishing feature of Schmidt-style abstract interpreta-

tion is that the derivation of abstract operational rules from

a given concrete operational semantics is systematic and to a

large extent mechanisable [10, 40]. The creative work is thus

reduced to providing abstract definitions for conditions and

semantic operations such as pattern matching, and defining

trace memoization strategies for non-structurally recursive

operational rules, to produce a terminating static analysis

that approximates an infinite number of concrete traces.

Figure 6 relates the concrete evaluation judgment (left) to

the abstract evaluation judgment (right) for Rascal expres-

sions. Both judgements evaluate the same expression e . The
abstract evaluation judgment abstracts the initial concrete

store σ with an abstract store σ̂ . The result of the abstract
evaluation is a finite result set R̂es, abstracting over possibly

infinitely many concrete result values rest resv and stores σ ′.

R̂es maps each result type rest to a pair of abstract result

value r̂esv and abstract result store σ̂ ′, i.e.:

R̂es = [rest1 7→ (�resv1, σ̂1), . . . , restn 7→ (�resvn, σ̂n)]
There is an important difference in how the concrete and

abstract semantic rules are used. In a concrete operational

semantics a language construct is usually evaluated as soon

as the premises of a rule are satisfied. When evaluating ab-

stractly, we must consider all applicable rules, to soundly

over-approximate the possible concrete executions. To this

end, we introduce a special notation to collect all derivations

with the same input i into a single derivation with output O
equal to the join of the individual outputs:

{|i ⇒ O|} ≜ O =
⊔
{o |i ⇒ o}

Let’s use the operational rules for variable accesses to illus-

trate the steps in Schmidt-style translation of operational

rules. The concrete semantics contains two rules for vari-

able accesses, E-V-S for successful lookup, and E-V-Er for

producing errors when accessing unassigned variables:

E-V-S

x ∈ dom σ

x ;σ ===⇒
expr

success σ (x);σ

E-V-Er

x < dom σ
x ;σ ===⇒

expr

error;σ

We follow three steps, to translate the concrete rules to ab-

stract operational rules:

1. For each concrete rule, create an abstract rule that

uses a judgment for evaluation of a syntactic form,

e.g., AE-V-S and AE-V-Er for variables.

2. Replace the concrete conditions and semantic oper-

ations with the equivalent abstract conditions and

semantic operations for target abstract values, e.g.

x ∈ dom σ with σ̂ (x) = (b, v̂s) and a check on b.
We obtain two execution rules:

AE-V-S

σ̂ (x) = (b, v̂s)

x ; σ̂ =====⇒
a-expr-v

[success 7→ (v̂s, σ̂ )]

AE-V-ER

σ̂ (x) = (tt, v̂s)

x ; σ̂ =====⇒
a-expr-v

[error 7→ (·, σ̂ )]

Observe when b is true, both a success and failure may

occur, and we need rules to cover both cases.

3. Create a rule that collects all possible evaluations of the

syntax-specific judgment rules, e.g.AE-V for variables:

AE-V

{|x ; σ̂ =====⇒
a-expr-v

R̂es
′|}

x ; σ̂ ====⇒
a-expr

R̂es
′

The possible shapes of the result value depend on the pair

assigned to x in the abstract store. If the value shape of x is⊥,

we drop the success result from the result set. The following

examples illustrate the possible outcome result shapes:
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Assigned Value Result Set Rules

σ̂ (x) = (ff,⊥V̂S) [] AE-V-S

σ̂ (x) = (ff, [1; 3]) [success 7→ ([1; 3], σ̂ )] AE-V-S

σ̂ (x) = (tt,⊥V̂S) [error 7→ (·, σ̂ )] AE-V-S, AE-V-Er

σ̂ (x) = (tt, [1; 3])
[success 7→ ([1; 3], σ̂ ),

error 7→ (·, σ̂ )]
AE-V-S, AE-V-Er

It is possible to translate the operational semantics rules for

other basic expressions using the presented steps [4, Appen-

dix B]). The core changes are the ones moving from checks

of definiteness to checks of possibility. For example:

• Checking that evaluation of e has succeeded, re-

quires that the abstract semantics uses e; σ̂ ====⇒
a-expr

R̂es
and (success, (v̂s, σ̂ ′)) ∈ R̂es, as compared to

e;σ ===⇒
expr

success v ;σ ′ in the concrete semantics.

• Typing is now done using abstract judgments

v̂s :̂ t and t <̂: t ′. In particular, type t is an abstract sub-

type of type t ′ (t <̂: t ′) if there is a subtype t ′′ of t
(t ′′ <: t ) that is also a subtype of t ′ (t ′′ <: t ′). This
implies that t <̂: t ′ and t ≮̂: t ′ are non-exclusive.
• To check whether a particular constructor is possible,

we use the abstract function
�unfold(v̂s, t) that produces

a refined value of type t if possible—splitting alterna-
tive constructors—and additionally produces error if
the value is possibly not an element of t .

6 Pattern Matching
Expressive pattern matching is key feature of high-level

transformation languages. Rabit handles the full Rascal pat-

tern language. For brevity, we discuss a subset, including

variables x , constructor patterns k(p), and set patterns {⋆p}:

p F x | k(p) | {⋆p} ⋆p F p | ⋆x

Rascal allows non-linear matching where the same variable

x can be mentioned more than once: all values matched

against x must have equal values for the match to succeed.

Each set pattern contains a sequence of sub-patterns⋆p; each
sub-pattern in the sequence is either an ordinary pattern p
matched against a single set element, or a star pattern ⋆x to

be matched against a subset of elements. Star patterns can

backtrack when pattern matching fails because of non-linear

variables, or when explicitly triggered by the fail expression.
This expressiveness poses challenges for developing an

abstract interpreter that is not only sound, but is also suffi-

ciently precise. The key aspects of Rabit in handling pattern

matching is how we maintain precision by refining input

values on pattern matching successes and failures.

6.1 Satisfiability Semantics for Patterns
We begin by defining what it means that a (concrete/abstract)

value matches a pattern. Figure 7a shows the concrete seman-

tics for patterns. In the figure, ρ is a binding environment:

ρ ∈ BindingEnv = Var⇀ Value

A value v matches a pattern p (v |= p) iff there exists a

binding environment ρ that maps the variables in the pattern

to values in dom ρ = vars(p) so that v is accepted by the

satisfiability semantics v |=ρ p as defined in Fig. 7a.

Constructor patterns k(p) accept any well-typed value

k(v) of the same constructor whose subcomponentsv match

the sub-patterns p consistently in the same binding environ-

ment ρ. A variable x matches exactly the value it is bound

to in the binding environment ρ. A set pattern {⋆p} accepts

any set of values {v} such that an associative-commutative

arrangement of the sub-values v matches the sequence of

sub-patterns ⋆p under ρ.

A value sequence v matches a pattern sequence ⋆p (v |=⋆

⋆p) if there exists a binding environment ρ such thatdom ρ =

vars(⋆p) and v |=⋆ρ ⋆p. An empty sequence of patterns ε ac-

cepts an empty sequence of values ε . A sequence starting

p,⋆p ′ with an ordinary pattern p matches any non-empty

sequence of values v,v ′ where v matches p and v ′ matches

⋆p ′ consistently under the same binding environment ρ. A

sequence ⋆x ,⋆p ′ works analogously but it splits the value

sequence in two v and v ′, such that x is assigned to v in ρ
and v ′ matches ⋆p ′ consistently in ρ.

Example 6.1. We revisit the running example to under-

stand how the data type values are matched. We consider

matching the following set of expression values:

{

v︷                                                   ︸︸                                                   ︷
mult (cst (zero) , cst (suc (zero))) , cst (zero)}

against the pattern p = {mult (x ,y) ,⋆w,x} in the environ-

ment ρ = [x 7→ cst (zero) ,y 7→ cst (suc (zero)) ,w 7→ {}].
The matching argument is as follows:

{v} |=ρ p iff v |=⋆ρ mult (x ,y) ,⋆w,x
iff mult (cst (zero) , cst (suc (zero))) |=ρ mult (x ,y)

and cst (zero) |=⋆ρ ⋆w,x

We see that the first conjunct matches as follows:

mult (cst (zero) , cst (suc (zero))) |=ρ mult (x ,y)
iff cst (zero) , cst (suc (zero)) |=⋆ρ x ,y
iff ρ(x) = cst (zero) and ρ(y) = cst (suc (zero))

Similarly, the second matches as follows:

cst (zero) |=⋆ρ ⋆w,x iff ρ(w) = {} and ρ(x) = cst (zero)

The abstract pattern matching semantics (Fig. 7b) is analo-

gous, but with a few noticeable differences. First, an abstract

value v̂s matches a pattern p (v̂s |̂= p) if there exists a more
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k(v) |=ρ k(p) iff t are parameter types of k
and v : t ′ and t ′ <: t
and v |=⋆ρ p

v |=ρ x iff ρ(x) = v

{v} |=ρ {⋆p} iff v |=⋆ρ ⋆p

ε |=⋆ρ ε always

v,v ′ |=⋆ρ p,⋆p′ iff v |=ρ p and v ′ |=⋆ρ ⋆p
′

v,v ′ |=⋆ρ ⋆x ,⋆p
′ iff ρ(x) = {v} and v ′ |=⋆ρ ⋆p

′

(a) Concrete (v |=ρ p reads: v matches p with ρ)

k(v̂s) |̂=ρ̂ k(p) iff t are parameter types of k

and v̂s :̂ t ′ and t ′ <̂: t and v̂s |̂=
⋆
ρ̂ p

v̂s |̂=ρ̂ x iff ρ̂(x) ⊑ v̂s

{v̂s}[l ;u] |̂=ρ̂ {⋆p} iff v̂s, [l ;u] |̂=
⋆
ρ̂ ⋆p

v̂s, [0;u] |̂=
⋆
ρ̂ ε always

v̂s, [l ;u] |̂=
⋆
ρ̂ p,⋆p′ iff u > 0 and v̂s |̂=ρ̂ p

and v̂s, [l − 1;u − 1] |̂=
⋆
ρ̂ p,⋆p′

v̂s, [l ;u] |̂=
⋆
ρ̂ ⋆ x ,⋆p

′ iff ρ̂(x) = {v̂s′}[l ′;u′]
and l ′ ≤ l and u ′ ≤ u and v̂s′ ⊑ v̂s
and v̂s, [l − u ′;u − l ′] |̂=

⋆
ρ̂ ⋆p

′

(b) Abstract (v̂s |̂=ρ̂ p̂ reads: v̂s may match p̂ with ρ̂)

Figure 7. Satisfiability semantics for pattern matching

precise value v̂s′ (so v̂s′ ⊑ v̂s) and an abstract binding en-

vironment ρ̂ with dom ρ̂ = vars(p) so that v̂s′ |̂=ρ̂ p. The
reason for using a more precise shape is the potential loss

of information during over-approximation—a more precise

value might have matched the pattern, even if the relaxed

value does not necessarily. Second, sequences are abstracted

by shape–lengths pairs, which needs to be taken into ac-

count by sequence matching rules. This is most visible in the

very last rule, with a star pattern ⋆x , where we accept any
assignment to a set abstraction v̂s which has a more precise

shape and a smaller length.

6.2 Computing Pattern Matches
The declarative satisfiability semantics of patterns, albeit

clean, is not directly computable. In Rabit, we rely on an

abstract operational semantics [4, Appendix A] using the

technique presented in Sect. 5. The interesting ideas are in

the refining semantic operators that we now discuss.

Semantic Operators with Refinement. Since Rascal sup-
ports non-linear matching, it becomes necessary to merge

environments computed when matching sub-patterns to

check whether a match succeeds or not. In abstract inter-

pretation, we can refine the abstract environments when

merging for each possibility. Consider when merging two

abstract environments, where some variable x is assigned

to v̂s in one, and v̂s′ in the other. If v̂s′ is possibly equal

to v̂s, we refine both values using this equality assumption

v̂s =̂ v̂s′. Here, we have that abstract equality is defined

as the greatest lower bound if the value is non-bottom, i.e.

v̂s =̂ v̂s′ ≜ {v̂s′′ |v̂s′′ = v̂s ⊓ v̂s′ , ⊥}. Similarly, we can also

refine both values if they are possibly non-equal v̂s ,̂ v̂s′.

Here, abstract inequality is defined using relative comple-

ments:

v̂s ,̂ v̂s′ ≜

{
(v̂s′′, v̂s′)|v̂s′′ = v̂s \ (v̂s ⊓ v̂s′) , ⊥

}
∪{

(v̂s, v̂s′′)|v̂s′′ = v̂s′ \ (v̂s ⊓ v̂s′) , ⊥
}

In our abstract domains, the relative complement (\) is lim-

ited. We heuristically define it for interesting cases, and oth-

erwise it degrades to identity in the first argument (no refine-

ment). There are however useful cases, e.g., for excluding

unary constructors suc (Nat) ≀ zero \ zero = suc (Nat) or at
the end points of a lattice [1; 10] \ [1; 2] = [3; 10].

Similarly, for matching against a constructor pattern k(p),

the core idea is that we should be able to partition our value

space into two: the abstract values that match the constructor

and those that do not. For those values that possibly match

k(p), we produce a refined value with k as the only choice,

making sure that the sub-values in the result are refined by

the sub-patterns p.

Otherwise, we exclude k from the refined value. For a data

type abstraction exclusion removes the pattern constructor

from the possible choices�exclude(k(v̂s) ≀k1(v̂s1) ≀ · · · ≀kn(v̂sn),k) = k1(v̂s1) ≀ . . . ≀kn(v̂sn)
and does not change the input shape otherwise.

7 Traversals
First-class traversals are a key feature of high-level transfor-

mation languages, since they enable effectively transforming

large abstract syntax trees. We will focus on the challenges

for bottom-up traversals, but they are shared amongst all

strategies supported in Rascal. The core idea of a bottom-up

traversal of an abstract value v̂s, is to first traverse children of
the value

�children(v̂s) possibly rewriting them, then recon-

struct a new value using the rewritten children and finally

traversing the reconstructed value. The main challenge is



GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

handling traversal of children, whose representation and

thus execution rules depend on the particular abstract value.

Concretely, the
�children(v̂s) function returns a set of pairs

(v̂s′, ĉvs) where the first component v̂s′ is a refinement of v̂s
that matches the shape of children ĉvs in the second compo-

nent. For data type values the representation of children is

a heterogeneous sequence of abstract values v̂s′′, while for
set values the representation of children is a pair (v̂s′′, [l ;u])
with the first component representing the shape of elements

and the second representing their count. For example,�children(mult (Expr, Expr) ≀ cst (suc (Nat))) ={
(mult (Expr, Expr) , (Expr, Expr)),

(cst (suc (Nat)) , suc (Nat))

}
and

�children({Expr}[1;10]) = {({Expr}[1;10], (Expr, [1; 10]))}.
Note how the

�children function maintains precision by parti-

tioning the alternatives for data-types, when traversing each

corresponding sequence of value shapes for the children.

Traversing Children. The shape of execution rules depend

on the representation of children; this is consistent with the

requirements imposed by Schmidt [40]. For heterogeneous

sequences of value shapes v̂s, the execution rules iterate

through the sequence recursively traversing each element.

Due to over-approximation we may re-traverse the same or

a more precise value on recursion, and so we need to use

trace memoization (Sect. 8) to terminate. For example the

children of an expression Expr refer to itself:

�children(Expr) = {
(mult (Expr, Expr) , (Expr, Expr)),

(cst (Nat) ,Nat), (var (str) , str)

}
Traversing children represented by a shape-length pair, is

directed by the length interval [l ;u]. If 0 is a possible value
of the length interval, then traversal can finish, refining the

input shape to be empty. Otherwise, we perform another tra-

versal recursively on the shape of elements and recursively

on a new shape-length pair which decreases the length, fi-

nally combining their values. Note, that if the length is un-

bounded, e.g. [0;∞], then the value can be decreased forever

and trace memoization is also needed here for termination.

This means that trace memoization must here be nested

breadth-wise (when recursing on an unbounded sequence

of children), in addition to depth-wise (when recursing on

children); this can be computationally expensive, and we

will discuss in Sect. 9 how our implementation handles that.

8 Trace Memoization
Abstract interpretation and static program analysis in gen-

eral performfixed-point calculation for analysing unbounded

loops and recursion. In Schmidt-style abstract interpretation,

the main technique to handle recursion is trace memoiza-
tion [38, 40]. The core idea of trace memoization is to detect

non-structural re-evaluation of the same program element,

i.e., when the evaluation of a program element is recursively

dependent on itself, like a while-loop or traversal.

The main challenge when recursing over inputs from in-

finite domains, is to determine when to merge recursive

paths together to correctly over-approximate concrete ex-

ecutions. We present an extension that is still terminating,

sound and, additionally, allows calculating results with good

precision. The core idea is to partition the infinite input

domain using a finite domain of elements, and on recur-

sion degrade input values using previously met input values

from the same partition. We assume that all our domains

are lattices with a widening operator. Consider a recursive

operational semantics judgment i =⇒ o, with i being an in-

put from domain �Input, and o being the output from domain�Output. For this judgment, we associate a memoization map

M̂ ∈ �PInput→ �Input×�Outputwhere �PInput is a finite parti-
tioning domain that has a Galois connection with our actual

input, i.e. �Input −−−−−→←−−−−−
αP̂ I

γP̂ I �PInput. The memoization map keeps

track of the previously seen input and corresponding output

for values in the partition domain. For example, for input

from our value domain
�Value we can use the correspond-

ing type from the domain Type as input to the memoization

map.
2
So for values 1 and [2; 3] we would use int, while for

mult(Expr, Expr) we would use the defining data type Expr.
We perform a fixed-point calculation over the evaluation of

input i . Initially, the memoization map M̂ is λpi.(⊥,⊥), and
during evaluation we check whether there was already a

value from the same partition as i , i.e., αP̂ I (i) ∈ dom M̂ . At

each iteration, there are then two possibilities:

Hit The corresponding input partition key is in the mem-

oization map and a less precise input is stored, so

M̂(αP̂ I (i)) = (i
′,o′) where i ⊑�Input i ′. Here, the out-

put value o that is stored in the memoization map is

returned as result.

Widen The corresponding input partition key is in themem-

oization map, but an unrelated or more precise input

is stored, i.e., M̂(αP̂ I (i)) = (i
′′,o′′)where i @�Input i ′′. In

this case we continue evaluation but with a widened

input i ′ = i ′′∇�Input(i ′′ ⊔ i) and an updated map M̂ ′ =

[αP̂ I (i) 7→ (i
′,oprev)]. Here, oprev is the output of the

last iteration for the fixed-point calculation for input

i ′, and is assigned ⊥ on the initial iteration.

Intuitively, the technique is terminating because the par-

titioning is finite, and widening ensures that we reach an

upper bound of possible inputs in a finite number of steps,

eventually getting a hit. The fixed-point iteration also uses

widening to calculate an upper bound, which similarly fin-

ishes in a number of steps. The technique is sound because

we only use output for previous input that is less precise;

therefore our function is continuous and a fixed-point exists.

2
Provided that we bound the depth of type parameters of collections.
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9 Experimental Evaluation
We demonstrate the ability of Rabit to verify inductive shape

properties, using five transformation programs, where three

are classical and two are extracted from open source projects.

Negation Normal Form (NNF) transformation [26, Sec-

tion 2.5] is a classical rewrite of a propositional formula to

combination of conjunctions and disjunctions of literals, so

negations appear only next to atoms. An implementation of

this transformation should guarantee the following:

P1 Implication is not used as a connective in the result

P2 All negations in the result are in front of atoms

Rename Struct Field (RSF) refactoring changes the name

of a field in a struct, and that all corresponding field access

expressions are renamed correctly as well:

P3 Structure should not define a field with the old field name

P4 No field access expression to the old field

DesugarOberon-0 (DSO) transformation [7, 49], translates

for-loops and switch-statements to while-loops and nested

if-statements, respectively.

P5 for should be correctly desugared to while
P6 switch should be correctly desugared to if
P7 No auxiliary data in output

Code Generation for Glagol (G2P) a DSL for REST-like

web development, translated to PHP for execution.
3
We are

interested in the part of the generator that translates Glagol

expressions to PHP, and the following properties:

P8 Output only simple PHP expressions for simple Glagol

expression inputs

P9 No unary PHP expressions if no sign marks or negations

in Glagol input

Mini Calculational Language (MCL) a programming

language text-book [42] implementation of a small expres-

sion language, with arithmetic and logical expressions, vari-

ables, if-expressions, and let-bindings. The implementation

contains an expression simplifier (larger version of running

example), type inference, an interpreter and a compiler.

P10 Simplification procedure produces an expression with

no additions with 0, multiplications with 1 or 0, sub-

tractions with 0, logical expressions with constant

operands, and if-expressions with constant conditions.

P11 Arithmetic expressions with no variables have type int
and no type errors

P12 Interpreting expressions with no integer constants and

let’s gives only Boolean values

P13 Compiling expressionswith no if’s produces no goto’sand
if instructions

P14 Compiling expressions with no if’s produces no labels

and does not change label counter

3https://github.com/BulgariaPHP/glagol-dsl

All these transformations satisfy the following criteria:

1. They are formulated by an independent source,

2. They can be translated in relatively straightforward

manner to our subset of Rascal, and

3. They exercise important constructs, including visitors

and the expressive pattern matching

We have ported all these programs to Rascal Light.

Threats to Validity. The programs are not selected ran-

domly, thus it can be hard to generalize the results. We mit-

igated this by selecting transformations that are realistic

and vary in authors and purpose. While translating the pro-

grams to Rascal Light, we strived to minimize the amount of

changes, but bias cannot be ruled out entirely.

Implementation. We have implemented the abstract inter-

preter in a prototype tool, Rabit
4
, for all of Rascal Light fol-

lowing the process described in sections 5 to 8. This required

handling additional aspects, not discussed in the paper:

1. Possibly undefined values

2. Extended result state with more Control flow con-

structs, backtracking, exceptions, loop control, and

3. Fine-tuning memoization strategies to the different

looping constructs and recursive calls

By default, we use the top element ⊤ specified as input, but

the user can specify the initial data-type refinements, store

and parameters, to get more precise results. The output of

the tool is the abstract result value set of abstractly interpret-

ing target function, the resulting store state and the set of

relevant inferred data-type refinements.

The implementation extends standard regular tree gram-

mar operations [1, 18], to handle the recursive equations

for the expressive abstract domains, including base values,

collections and heterogeneous data types. We use a more

precise partitioning strategy for trace memoization when

needed, which also takes the set of available constructors

into account for data types.

Results. We ran the experiments using Scala 2.12.2 on a 2012

Core i5 MacBook Pro. Table 1 summarizes the size of the

programs, the runtime of Rabit, and whether the properties

have been verified. Since we verify the results on the abstract

shapes, the programs are shown to be correct for all possible

concrete inputs satisfying the given properties. We remark

that all programs use the high-level expressive features of

Rascal and are succinct compared to general purpose code.

The runtime, varying from single seconds to less than a

minute, is reasonable. All, but two, properties were success-

fully verified. The reason that our tool runs slower on the

DSO transformation is that it contains function calls and we

rely on inlining for interprocedural analysis.

Lines 1–2 in Fig. 8 show the input refinement type FIn for

the normalization procedure. The inferred inductive output

4 https://github.com/itu-square/Rascal-Light

https://github.com/BulgariaPHP/glagol-dsl
https://github.com/itu-square/Rascal-Light
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Figure 8. Initial and inferred refinement types for NNF

1 data FIn = and(FIn, FIn) | atom(str) | neg(FIn)
2 | imp(FIn, FIn) | or(FIn, FIn)
3

4 data FOut = and(FOut, FOut) | atom(str)
5 | neg(atom(str)) | or(FOut, FOut)

type FOut (lines 4–5) specifies that the implication is not

present in the output (P1), and negation only allows atoms as

subformulae (P2). In fact, Rabit inferred a precise formulation

of negation normal form as an inductive data type.

10 Related Work
We start with discussing techniques that could make Rabit

verify properties like P3 and P7. To verify P3, we need to be

able to relate field names to their corresponding definitions

in the class. Relational abstract interpreteration [32] allows

specifying constraints that relate values across different vari-

ables, even inside and across substructures [14, 25, 30]. For a

concrete input of P7, we know that the number of auxiliary

data elements decreases on each iteration, but this informa-

tion is lost in our abstraction. A possible solution could be to

allow abstract attributes that extract additional information

about the abstracted structures [11, 34, 45]. A generalization

of the multiset abstraction [33], could be useful to track e.g.,

the auxiliary statement count, and show that they decrease

usingmultiset-ordering [23]. Other techniques [5, 14, 47] sup-

port inferring inductive relational properties for general data-

types—e.g, binary tree property—but require a pre-specified

structure to indicate where refinement can happen.

Cousot and Cousot [19] present a general framework for

modularly constructing program analyses, but it requires lan-

guages with compositional control flow. Toubhans, Rival and

Table 1. Time and success rate for analyzing programs and

properties presented earlier this section.

Transformation LOC Runtime [s] Property Verified

P1 ✓
NNF 15 7.3

P2 ✓

P3 ✗
RSF 35 6.0

P4 ✓

P5 ✓

P6 ✓DSO 125 25.0

P7 ✗

1.6 P8 ✓
G2P 350

3.5 P9 ✓

1.6 P10 ✓

0.7 P11 ✓

0.6 P12 ✓

P13 ✓

MCL

298

0.9

P14 ✓

Chang [37, 46] develop a modular domain design for pointer-

manipulating programs, whereas our domain construction

focuses on abstracting pure heterogeneous data-structures.

There are similarities between our work and verification

techniques based on program transformation[22, 29]. Our

systematic exploration of execution rules for abstraction

is similar to unfolding, and widening is similar to folding.
The main difference is that abstract interpretation widens at

syntactic program points using rich domains, while folding

happens dynamically on the semantic execution graph.

Definitional interpreters have been suggested as a tech-

nique for building compositional abstract interpreters [21].

They rely on a caching algorithm to ensure termination, sim-

ilarly to ordinary finite input trace memoization [38]. Simi-

larly, Van Horn and Might [27] present a systematic frame-

work to abstract higher-order functional languages. They

rely on store-allocated continuations to handle recursion,

which is kept finite during abstraction to ensure a terminat-

ing analysis. We focused on providing a more precise widen-

ing based on the abstract input value, which was necessary

for verifying the required properties in our evaluation.

Modern SMT solvers supports reasoning with inductive

functions defined over algebraic data-types [35]. The proper-

ties they can verify are very expressive, but they do not scale

to large programs like transformations. Possible constructor

analysis [6] has been used to calculate the actual dependen-

cies of a predicate and make flow-sensitive analyses more

precise. This analysis works with complex data-types and

arrays, but only captures the prefix of the target structures.

Techniques for model transformation verification on static

analysis [20] have been suggested, but are on verification

of types and undefinedness properties. Symbolic execution

has previously been suggested [3] as a way to validate high-

level transformation programs, but it targets test generation

rather than verification of properties. Semantic typing [9, 13]

has been used to infer recursive type and shape properties

for language with high-level constructs for querying and it-

eration. However, they only consider small calculi compared

to Rascal Light, and our evaluation is more extensive.

11 Conclusion
Our goal was to use abstract interpretation to give a solid

semantic foundation for analyzing programs in modern high-

level transformation languages. We designed and imple-

mented a Schmidt-style abstract interpreter, Rabit, including

partition-driven trace memoization that supports infinite in-

put domains. This worked well for Rascal, and can be adapted

for similar languages with complex control flow. The modu-

lar construction of abstract domains was vital for handling a

language of this scale and complexity. We evaluated Rabit

on classical and open source transformations, by verifying a

series of sophisticated shape properties for them.
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