28 research outputs found

    Investigation of soft matter nanomechanics by atomic force microscopy and optical tweezers: a comprehensive review

    Get PDF
    Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young’s modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems

    Optical trapping and critical Casimir forces

    Full text link
    Critical Casimir forces emerge between objects, such as colloidal particles, whenever their surfaces spatially confine the fluctuations of the order parameter of a critical liquid used as a solvent. These forces act at short but microscopically large distances between these objects, reaching often hundreds of nanometers. Keeping colloids at such distances is a major experimental challenge, which can be addressed by the means of optical tweezers. Here, we review how optical tweezers have been successfully used to quantitatively study critical Casimir forces acting on particles in suspensions. As we will see, the use of optical tweezers to experimentally study critical Casimir forces can play a crucial role in developing nano-technologies, representing an innovative way to realize self-assembled devices at the nano- and microscale.Comment: 18 pages, 11 figure

    Correction: Controlling the dynamics of colloidal particles by critical Casimir forces.

    Get PDF
    Correction for 'Controlling the dynamics of colloidal particles by critical Casimir forces' by Alessandro MagazzĂč et al., Soft Matter, 2019, 15, 2152–2162, DOI: 10.1039/C8SM01376D

    Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires

    Get PDF
    We measure, by photonic torque microscopy, the nonconservative rotational motion arising from the transverse components of the radiation pressure on optically trapped, ultrathin silicon nanowires. Unlike spherical particles, we find that nonconservative effects have a significant influence on the nanowire dynamics in the trap. We show that the extreme shape of the trapped nanowires yields a transverse component of the radiation pressure that results in an orbital rotation of the nanowire about the trap axis. We study the resulting motion as a function of optical power and nanowire length, discussing its size-scaling behavior. These shape-dependent nonconservative effects have implications for optical force calibration and optomechanics with levitated nonspherical particles

    Polarization-dependent optomechanics mediated by chiral microresonators.

    Get PDF
    Chirality is one of the most prominent and intriguing aspects of nature, from spiral galaxies down to aminoacids. Despite the wide range of living and non-living, natural and artificial chiral systems at different scales, the origin of chirality-induced phenomena is often puzzling. Here we assess the onset of chiral optomechanics, exploiting the control of the interaction between chiral entities. We perform an experimental and theoretical investigation of the simultaneous optical trapping and rotation of spherulite-like chiral microparticles. Due to their shell structure (Bragg dielectric resonator), the microparticles function as omnidirectional chiral mirrors yielding highly polarization-dependent optomechanical effects. The coupling of linear and angular momentum, mediated by the optical polarization and the microparticles chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques. This offers tools for optomechanics, optical sorting and sensing and optofluidics

    Inter-society consensus document on treatment and prevention of bronchiolitis in newborns and infants

    Get PDF
    Acute bronchiolitis is the leading cause of lower respiratory tract infection and hospitalization in children less than 1 year of age worldwide. It is usually a mild disease, but some children may develop severe symptoms, requiring hospital admission and ventilatory support in the ICU. Infants with pre-existing risk factors (prematurity, bronchopulmonary dysplasia, congenital heart diseases and immunodeficiency) may be predisposed to a severe form of the disease. Clinical diagnosis of bronchiolitis is manly based on medical history and physical examination (rhinorrhea, cough, crackles, wheezing and signs of respiratory distress). Etiological diagnosis, with antigen or genome detection to identify viruses involved, may have a role in reducing hospital transmission of the infection. Criteria for hospitalization include low oxygen saturation (<90-92%), moderate-to-severe respiratory distress, dehydration and presence of apnea. Children with pre-existing risk factors should be carefully assessed. To date, there is no specific treatment for viral bronchiolitis, and the mainstay of therapy is supportive care. This consists of nasal suctioning and nebulized 3% hypertonic saline, assisted feeding and hydration, humidified O2 delivery. The possible role of any pharmacological approach is still debated, and till now there is no evidence to support the use of bronchodilators, corticosteroids, chest physiotherapy, antibiotics or antivirals. Nebulized adrenaline may be sometimes useful in the emergency room. Nebulized adrenaline can be useful in the hospital setting for treatment as needed. Lacking a specific etiological treatment, prophylaxis and prevention, especially in children at high risk of severe infection, have a fundamental role. Environmental preventive measures minimize viral transmission in hospital, in the outpatient setting and at home. Pharmacological prophylaxis with palivizumab for RSV bronchiolitis is indicated in specific categories of children at risk during the epidemic period. Viral bronchiolitis, especially in the case of severe form, may correlate with an increased incidence of recurrent wheezing in pre-schooled children and with asthma at school age. The aim of this document is to provide a multidisciplinary update on the current recommendations for the management and prevention of bronchiolitis, in order to share useful indications, identify gaps in knowledge and drive future research

    Hyades Member K2-136c:The Smallest Planet in an Open Cluster with a Precisely Measured Mass

    Get PDF
    International audienceK2-136 is a late-K dwarf (0.742 ± 0.039 M ⊙) in the Hyades open cluster with three known, transiting planets and an age of 650 ± 70 Myr. Analyzing K2 photometry, we found that planets K2-136b, c, and d have periods of 8.0, 17.3, and 25.6 days and radii of 1.014 ± 0.050 R ⊕, 3.00 ± 0.13 R ⊕, and 1.565 ± 0.077 R ⊕, respectively. We collected 93 radial velocity (RV) measurements with the High-Accuracy Radial-velocity Planet Searcher for the Northern hemisphere (HARPS-N) spectrograph (Telescopio Nazionale Galileo) and 22 RVs with the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) spectrograph (Very Large Telescope). Analyzing HARPS-N and ESPRESSO data jointly, we found that K2-136c induced a semi-amplitude of 5.49 ± 0.53 m s-1, corresponding to a mass of 18.1 ± 1.9 M ⊕. We also placed 95% upper mass limits on K2-136b and d of 4.3 and 3.0 M ⊕, respectively. Further, we analyzed Hubble Space Telescope and XMM-Newton observations to establish the planetary high-energy environment and investigate possible atmospheric loss. K2-136c is now the smallest planet to have a measured mass in an open cluster and one of the youngest planets ever with a mass measurement. K2-136c has ~75% the radius of Neptune but is similar in mass, yielding a density of 3.69−0.56+0.67{3.69}_{-0.56}^{+0.67} g cm-3 (~2-3 times denser than Neptune). Mass estimates for K2-136b (and possibly d) may be feasible with more RV observations, and insights into all three planets' atmospheres through transmission spectroscopy would be challenging but potentially fruitful. This research and future mass measurements of young planets are critical for investigating the compositions and characteristics of small exoplanets at very early stages of their lives and providing insights into how exoplanets evolve with time

    Optical trapping and critical Casimir forces

    No full text
    Critical Casimir forces emerge between objects, such as colloidal particles, whenever their surfaces spatially confine the fluctuations of the order parameter of a critical liquid used as a solvent. These forces act at short but microscopically large distances between these objects, reaching often hundreds of nanometers. Keeping colloids at such distances is a major experimental challenge, which can be addressed by the means of optical tweezers. Here, we review how optical tweezers have been successfully used to quantitatively study critical Casimir forces acting on particles in suspensions. As we will see, the use of optical tweezers to experimentally study critical Casimir forces can play a crucial role in developing nano-technologies, representing an innovative way to realize self-assembled devices at the nano- and microscale
    corecore