46 research outputs found

    Establecimiento y caracterización de un modelo in vitro de monocitos humanos infiltrados en tumores

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 13 de Enero de 200

    Nasal Pneumococcal Density is Associated with Microaspiration and Heightened Human Alveolar Macrophage Responsiveness to Bacterial Pathogens.

    Get PDF
    RATIONALE Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with S.pneumoniae (Spn), although, a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited. OBJECTIVES Using a Controlled Human Infection Model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells. METHODS We collected bronchoalveolar lavages from healthy pneumococcal challenged participants aged 18-49 years. Confocal microscopy, molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations. MEASUREMENTS AND MAIN RESULTS AM from Spn-colonized exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for four months after clearance of experimental pneumococcal colonization. AM had also increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized were positively correlated with nasal pneumococcal density (r=0.71, p=0.029). Similarly, AM heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r=0.61, p=0.025). CONCLUSIONS Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AM, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AM in the alveolar spaces, alongside with their potential for non-specific protection, render them an attractive target for novel vaccines. Clinical trial registration available at http://www.isrctn.com, ID: ISRCTN16993271

    Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection

    Get PDF
    Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2

    Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour

    No full text
    Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5′-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumoor-promoting molecule) in the circulation

    Walker 256 Tumor Mhc Class I Expression During The Shift From A Variant To The Immunogenic Ar Variant.

    No full text
    Novel tumor cell variants can be obtained by serially passaging tumor cells in different media and/or environments. Serial intraperitoneal (ip) passages of the Walker 256 tumor A variant was followed for studying the generation of its regressive AR variant. MHC class I molecule expression was assessed since variations in this molecule would explain changes in tumor cell immunogenicity and therefore, the shift from progressive A variant to the regressive AR variant. Within 25 ip passages all serial repetitions shifted from A to AR variant, which was characterized by a significant increase in red blood cell (RBC) osmotic fragility with marked spleen hypertrophy in the host. In one serial repetition AR tumor cells were rejected (ip passage number 36) and immunity against the AR and A variants was conferred. Flow cytometry analysis showed a significant increase in the number MHC class I positive cells in AR variant (n = 15, 14.21 +/- 1.32) compared with A variant (n = 10, 9.10 +/- 1.22). These data provide evidence that the generation of the AR variant could result from factors present in the ip environment leading to an increase in the number of Walker 256 MHC class I positive tumor cells, probably due to immune selection of MHC class I negative tumor cells.211119-2

    Evaluation of inactivated Bordetella pertussis as a delivery system for the immunization of mice with Pneumococcal Surface Antigen A

    No full text
    International audiencePneumococcal Surface Protein A (PspA) has been successfully tested as vaccine candidate against Streptococcus pneumoniae infections. Vaccines able to induce PspA-specific antibodies and Th1 cytokines usually provide protection in mice. We have shown that the whole cell pertussis vaccine (wP) or components from acellular pertussis vaccines, such as Pertussis Toxin or Filamentous Hemagglutinin (FHA), are good adjuvants to PspA, suggesting that combined pertussis-PspA vaccines would be interesting strategies against the two infections. Here, we evaluated the potential of wP as a delivery vector to PspA. Bordetella pertussis strains producing a PspA from clade 4 (PspA4Pro) fused to the N-terminal region of FHA (Fha44) were constructed and inactivated with formaldehyde for the production of wPPspA4Pro. Subcutaneous immunization of mice with wPPspA4Pro induced low levels of anti-PspA4 IgG, even after 3 doses, and did not protect against a lethal pneumococcal challenge. Prime-boost strategies using wPPspA4Pro and PspA4Pro showed that there was no advantage in using the wPPspA4Pro vaccine. Immunization of mice with purified PspA4Pro induced higher levels of antibodies and protection against pneumococcal infection than the prime-boost strategies. Finally, purified Fha44:PspA4Pro induced high levels of anti-PspA4Pro IgG, but no protection, suggesting that the antibodies induced by the fusion protein were not directed to protective epitopes

    Correction: Evaluation of inactivated Bordetella pertussis as a delivery system for the immunization of mice with Pneumococcal Surface Antigen A

    No full text
    International audienceAbstract[This corrects the article DOI: 10.1371/journal.pone.0228055.].Erratum forEvaluation of inactivated Bordetella pertussis as a delivery system for the immunization of mice with Pneumococcal Surface Antigen A.Castro JT, Oliveira GS, Nishigasako MA, Debrie AS, Miyaji EN, Soares-Schanoski A, Akamatsu MA, Locht C, Ho PL, Mielcarek N, Oliveira MLS.PLoS One. 2020 Jan 16;15(1):e0228055. doi: 10.1371/journal.pone.0228055. eCollection 2020
    corecore